| + | ∂T | δχ˙ + ... + | ∂T | δq1 + ... − κδχ˙ − χ˙δκ − .... |
| ∂χ˙ | ∂χ1 |
(4)
Omitting the terms which cancel by (2), we find
| ∂T | = | ∂R | , | ∂T | = | ∂R | , ..., |
| ∂q˙1 | ∂q˙1 | ∂q˙2 | ∂q˙2 |
(5)
| ∂T | = | ∂R | , | ∂T | = | ∂R | , ..., |
| ∂q1 | ∂q1 | ∂q2 | ∂q2 |
(6)
| χ˙ = − | ∂R | , χ˙′ = − | ∂R | , χ˙″ = − | ∂R | , ... |
| ∂κ | ∂κ′ | ∂κ″ |
(7)