+ ∂Tδχ˙ + ... + ∂Tδq1 + ... − κδχ˙ − χ˙δκ − ....
∂χ˙ ∂χ1

(4)

Omitting the terms which cancel by (2), we find

∂T =∂R ,   ∂T =∂R , ...,
∂q˙1 ∂q˙1∂q˙2 ∂q˙2

(5)

∂T =∂R ,   ∂T =∂R , ...,
∂q1 ∂q1∂q2 ∂q2

(6)

χ˙ = − ∂R,   χ˙′ = − ∂R,   χ˙″ = − ∂R, ...
∂κ ∂κ′∂κ″

(7)