(3)

Fig. 31.

If the magnet cores are of wrought iron or cast steel, and the yoke is of cast iron, the last term must be divided into two portions corresponding to the different materials, i.e. into f(Bm)lm + f(By)ly. In the ordinary multipolar machine with as many magnet-coils as there are poles, each coil must furnish half the above number of ampere-turns.

Since no substance is impermeable to the passage of magnetic flux, the only form of magnetic circuit free from leakage is one uniformly wound with ampere-turns over its whole length. The reduction of the magnetic leakage to a minimum in any Magnetic leakage. given type is therefore primarily a question of distributing the winding as far as possible uniformly upon the circuit, and as the winding must be more or less concentrated into coils, it resolves itself into the necessity of introducing as long air-paths as possible between any surfaces which are at different magnetic potentials. No iron should be brought near the machine which does not form part of the magnetic circuit proper, and especially no iron should be brought near the poles, between which the difference of magnetic potential practically reaches its maximum value. In default of a machine of the same size or similar type on which to experiment, the probable direction of the leakage flux must be assumed from the drawing, and the air surrounding the machine must be mapped out into areas, between which the permeances are calculated as closely as possible by means of such approximate formulae as those devised by Professor G. Forbes.

In the earliest “magneto-electric” machines permanent steel magnets, either simple or compound, were employed, and for many years these were retained in certain alternators, some of which are still in use for arc lighting in lighthouses. Excitation of field-magnet. But since the field they furnish is very weak, a great advance was made when they were replaced by soft iron electromagnets, which could be made to yield a much more intense flux. As early as 1831 Faraday[18] experimented with electromagnets, and after 1850 they gradually superseded the permanent magnet. When the total ampere-turns required to excite the electromagnet have been determined, it remains to decide how the excitation shall be obtained; and, according to the method adopted, continuous-current machines may be divided into four well-defined classes.

Fig. 32.

The simplest method, and that which was first used, is separate excitation from some other source of direct current, which may be either a primary or a secondary battery or another dynamo (fig. 32). But since the armature yields a continuous current, it was early suggested (by J. Brett in 1848 and F. Sinsteden in 1851) that this current might be utilized to increase the flux; combinations of permanent and electromagnets were therefore next employed, acting either on the main armature or on separate armatures, until in 1867 Dr Werner von Siemens and Sir C. Wheatstone almost simultaneously discovered that the dynamo could be made self-exciting through the residual magnetism retained in the soft iron cores of the electromagnet. The former proposed to take the whole of the current round the magnet coils which were in series with the armature and external circuit, while the latter proposed to utilize only a portion derived by a shunt from the main circuit; we thus arrive at the second and third classes, namely, series and shunt machines. The starting of the process of excitation in either case is the same; when the brushes are touching the commutator and the armature is rotated, the small amount of flux left in the magnet is cut by the wires, and a very small current begins to flow round the closed circuit; this increases the flux, which in turn further increases the E.M.F. and current, until, finally, the cumulative effect stops through the increasing saturation of the iron cores. Fig. 33, illustrating the series machine, shows the winding of the exciting coils to be composed of a few turns of thick wire. Since the current is undivided throughout the whole circuit, the resistance of both the armature and field-magnet winding must be low as compared with that of the external circuit, if the useful power available at the terminals of the machine is to form a large percentage of the total electrical power—in other words, if the efficiency is to be high. Fig. 34 shows the third method, in which the winding of the field-magnets is a shunt or fine-wire circuit of many turns applied to the terminals of the machine; in this ease the resistance of the shunt must be high as compared with that of the external circuit, in order that only a small proportion of the total energy may be absorbed in the field.

Fig. 33.Fig. 34.

Since the whole of the armature current passes round the field-magnet of the series machine, any alteration in the resistance of the external circuit will affect the excitation and also the voltage. A curve connecting together corresponding values of external current and terminal voltage for a given speed of rotation is known as the external-characteristic of the machine; in its main features it has the same appearance as a curve of magnetic flux, but when the current exceeds a certain amount it begins to bend downwards and the voltage decreases. The reason for this will be found in the armature reaction at large loads, which gradually produces a more and more powerful demagnetizing effect, as the brushes are shifted forwards to avoid sparking; eventually the back ampere-turns overpower any addition to the field that would otherwise be due to the increased current flowing round the magnet. The “external characteristic” for a shunt machine has an entirely different shape. The field-magnet circuit being connected in parallel with the external circuit, the exciting current, if the applied voltage remains the same, is in no way affected by alterations in the resistance of the latter. As, however, an increase in the external current causes a greater loss of volts in the armature and a greater armature reaction, the terminal voltage, which is also the exciting voltage, is highest at no load and then diminishes. The fall is at first gradual, but after a certain critical value of the armature current is reached, the machine is rapidly demagnetized and loses its voltage entirely.

Fig. 35.