Fig. 3.

In an effective water-brake invented by W. Froude (see Proc. Inst. M. E. 1877), two similar castings, A and B, each consisting of a boss and circumferential annular channel, are placed face to face on a shaft, to which B is keyed, A being free (fig. 4). A ring tube of elliptical section is thus formed. Each channel is divided into a series of pockets by equally spaced vanes inclined at 45°. When A is held still, and B rotated, centrifugal action sets up vortex currents in the water in the pockets; thus a continuous circulation is caused between B and A, and the consequent changes of momentum give rise to oblique reactions. The moments of the components of these actions and reactions in a plane to which the axis of rotation is at right angles are the two aspects of the torque acting, and therefore the torque acting on B through the shaft is measured by the torque required to hold A still. Froude constructed a brake to take up 2000 H.P. at 90 revs. per min. by duplicating this apparatus. This replaced the propeller of the ship whose engines were to be tested, and the outer casing was held from turning by a suitable arrangement of levers carried to weighing apparatus conveniently disposed on the wharf. The torque corresponding to 2000 H.P. at 90 revs. per min. is 116,772 foot-pounds, and a brake 5 ft. in diameter gave this resistance. Thin metal sluices were arranged to slide between the wheel and casing, and by their means the range of action could be varied from 300 H.P. at 120 revs. per min. to the maximum.

Fig. 4.

Professor Osborne Reynolds in 1887 patented a water-brake (see Proc. Inst. C.E. 99, p. 167), using Froude’s turbine to obtain the highly resisting spiral vortices, and arranging passages in the casing for the entry of water at the hub of the wheel and its exit at the circumference. Water enters at E (fig. 5), and finds its way into the interior of the wheel, A, driving the air in front of it through the air-passages K, K. Then following into the pocketed chambers V1, V2, it is caught into the vortex, and finally escapes at the circumference, flowing away at F. The air-ways k, k, in the fixed vanes establish communication between the cores of the vortices and the atmosphere. From 1⁄5 to 30 H.P. may be measured at 100 revs. per min. by a brake-wheel of this kind 18 in. in diameter. For other speeds the power varies as the cube of the speed. The casing is held from turning by weights hanging on an attached arm. The cocks regulating the water are connected to the casing, so that any tilting automatically regulates the flow, and therefore the thickness of the film in the vortex. In this way the brake may be arranged to maintain a constant torque, not withstanding variation of the speed. In G.I. Alden’s brake (see Trans. Amer. Soc. Eng. vol. xi.) the resistance is obtained by turning a cast iron disk against the frictional resistance of two thin copper plates, which are held in a casing free to turn upon the shaft, and are so arranged that the pressure between the rubbing surfaces is controlled, and the heat developed by friction carried away, by the regulated flow of water through the casing. The torque required to hold the casing still against the action of the disk measures the torque exerted by the shaft to which the disk is keyed.

Fig. 5.
Fig. 6.

Transmission Dynamometers.—The essential part of many transmission dynamometers is a spring whose deformation indirectly measures the magnitude of the force transmitted through it. For many kinds of spring the change of form is practically proportional to the force, but the relation should always be determined experimentally. General A.J. Morin (see Notice sur divers appareils dynamométriques, Paris, 1841), in his classical experiments on traction, arranged his apparatus so that the change in form of the spring was continuously recorded on a sheet of paper drawn under a style. For longer experiments he used a “Compteur” or mechanical integrator, suggested by J.V. Poncelet, from which the work done during a given displacement could be read off directly. This device consists of a roller of radius r, pressed into contact with a disk. The two are carried on a common frame, so arranged that a change in form of the spring causes a relative displacement of the disk and roller, the point of contact moving radially from or towards the centre of the disk. The radial distance x is at any instant proportional to the force acting through the spring. The angular displacement, θ, of the disk is made proportional to the displacement, s, of the point of application of the force by suitable driving gear. If dφ is the angular displacement of the roller corresponding to displacements, dθ of the disk, and ds of the point of application of P, a, and C constants, then dφ = xdθ / r = (a/r) P ds = C·P ds, and therefore φ = C ∫S2S1 P ds; that is, the angular displacement of the roller measures the work done during the displacement from s1 to s2. The shaft carrying the roller is connected to a counter so that φ may be observed. The angular velocity of the shaft is proportional to the rate of working. Morin’s dynamometer is shown in fig. 6. The transmitting spring is made up of two flat bars linked at their ends. Their centres s1, s2, are held respectively by the pieces A, B, which together form a sliding pair. The block A carries the disk D, B carries the roller R and counting gear. The pulley E is driven from an axle of the carriage. In a dynamometer used by F.W. Webb to measure the tractive resistance of trains on the London & North-Western railway, a tractive pull or push compresses two spiral springs by a definite amount, which is recorded to scale by a pencil on a sheet of paper, drawn continuously from a storage drum at the rate of 3 in. per mile, by a roller driven from one of the carriage axles. Thus the diagram shows the tractive force at any instant. A second pencil electrically connected to a clock traces a time line on the diagram with a kick at every thirty seconds. A third pencil traces an observation line in which a kick can be made at will by pressing any one of the electrical pushes placed about the car, and a fourth draws a datum line. The spring of the dynamometer car used by W. Dean on the Great Western railway is made up of thirty flat plates, 7 ft. 6 in. long, 5 in. × 5⁄8 in. at the centre, spaced by distance pieces nibbed into the plates at the centre and by rollers at the ends. The draw-bar is connected to the buckle, which is carried on rollers, the ends of the spring resting on plates fixed to the under-frame. The gear operating the paper roll is driven from the axle of an independent wheel which is let down into contact with the rail when required. This wheel serves also to measure the distance travelled. A Morin disk and roller integrator is connected with the apparatus, so that the work done during a journey may be read off. Five lines are traced on the diagram.

Fig. 7.

In spring dynamometers designed to measure a transmitted torque, the mechanical problem of ascertaining the change of form of the spring is complicated by the fact that the spring and the whole apparatus are rotating together. In the Ayrton and Perry transmission dynamometer or spring coupling of this type, the relative angular displacement is proportional to the radius of the circle described by the end of a light lever operated by mechanism between the spring-connected parts. By a device used by W.E. Dalby (Proc. Inst.C.E. 1897-1898, p. 132) the change in form of the spring is shown on a fixed indicator, which may be placed in any convenient position. Two equal sprocket wheels Q1, Q2, are fastened, the one to the spring pulley, the other to the shaft. An endless band is placed over them to form two loops, which during rotation remain at the same distance apart, unless relative angular displacement occurs between Q1 and Q2 (fig. 7) due to a change in form of the spring. The change in the distance d is proportional to the change in the torque transmitted from the shaft to the pulley. To measure this, guide pulleys are placed in the loops guided by a geometric slide, the one pulley carrying a scale, and the other an index. A recording drum or integrating apparatus may be arranged on the pulley frames. A quick variation, or a periodic variation of the magnitude of the force or torque transmitted through the springs, tends to set up oscillations, and this tendency increases the nearer the periodic time of the force variation approaches a periodic time of the spring. Such vibrations may be damped out to a considerable extent by the use of a dash-pot, or may be practically prevented by using a relatively stiff spring.

Every part of a machine transmitting force suffers elastic deformation, and the force may be measured indirectly by measuring the deformation. The relation between the two should in all cases be found experimentally. G.A. Hirn (see Les Pandynamomètres, Paris, 1876) employed this principle to measure the torque transmitted by a shaft. Signor Rosio used a telephonic method to effect the same end, and mechanical, optical and telephonic devices have been utilized by the Rev. F.J. Jervis-Smith. (See Phil. Mag. February 1898.)

H. Frahm,[1] during an important investigation on the torsional vibration of propeller shafts, measured the relative angular displacement of two flanges on a propeller shaft, selected as far apart as possible, by means of an electrical device (Engineering, 6th of February 1903). These measurements were utilized in combination with appropriate elastic coefficients of the material to find the horse-power transmitted from the engines along the shaft to the propeller. In this way the effective horse-power and also the mechanical efficiency of a number of large marine engines, each of several thousand horse-power, have been determined.