In the 19th century the term “eclectic” came to be applied specially to a number of French philosophers who differed considerably from one another. Of these the earliest were Pierre Paul Royer-Collard, who was mainly a follower of Thomas Reid, and Maine de Biran; but the name is still more appropriately given to the school of which the most distinguished members are Victor Cousin, Théodore Jouffroy, J.P. Damiron, Barthélemy St Hilaire, C.F.M. de Rémusat, Adolphe Garnier and Ravaisson-Mollien. Cousin, whose views varied considerably at different periods of his life, not only adopted freely what pleased him in the doctrines of Pierre Laromiguière, Royer-Collard and Maine de Biran, of Kant, Schelling and Hegel, and of the ancient philosophies, but expressly maintained that the eclectic is the only method now open to the philosopher, whose function thus resolves itself into critical selection and nothing more. “Each system,” he asserted, “is not false, but incomplete, and in reuniting all incomplete systems, we should have a complete philosophy, adequate to the totality of consciousness.” This assumes that every philosophical truth is already contained somewhere in the existing systems. If, however, as it would surely be rash to deny, there still remains philosophical truth undiscovered, but discoverable by human intelligence, it is evident that eclecticism is not the only philosophy. Eclecticism gained great popularity, and, partly owing to Cousin’s position as minister of public instruction, became the authorized system in the chief seats of learning in France, where it has given a most remarkable impulse to the study of the history of philosophy.


ECLIPSE (Gr. ἔκλειψις, falling out of place, failing), the complete or partial obscuration of one heavenly body by the shadow of another, or of the disk of the sun by the interposition of the moon; then called an eclipse of the sun. Eclipses are of three classes: those of the sun, as just defined; those of the moon, produced by its passage through the shadow of the earth, and those of the satellites of other planets, produced by their passage through the shadow of their primary. Jupiter (q.v.) is the only planet of whose satellites the eclipses can be observed, unless under very rare circumstances.

The geometrical conditions of an eclipse of the sun or moon are shown in fig. 1, which represents the earth E as casting its shadow towards C, and the moon M between the earth and sun as throwing its shadow towards some part of the earth and eclipsing the sun. The dark conical regions are those within which the sun is entirely hidden from sight. This portion of the shadow is called the umbra. Around the umbra is an enveloping shaded cone with its vertices directly towards the sun. To an observer within this region the sun is partly hidden from view. As the apparent path of the moon may pass to the north or south of the line joining the earth and sun, the axis of its shadow may pass to the north or south of the earth, and not meet it at all. An eclipse of the sun is called central when the shadow axis strikes any part of the earth; partial when only the penumbra falls upon the earth. It is evident that an eclipse can be seen as central only at those points of the earth’s surface over which the axis of the shadow passes.

Fig. 2.
Fig. 3.

A central eclipse is total when the umbra actually reaches the earth; annular when it does not. These two cases are shown in figs. 2 and 3. In the first of these the sun is entirely hidden within the region uu′. In fig. 3 within the region aa’ the apparent diameter of the sun is slightly greater than that of the moon, and at the moment of greatest eclipse a narrow ring of sunlight is seen surrounding the dark body of the moon.

We shall treat the subject in the following sections:—

I. Phenomena of Eclipses of the Sun and conclusions derived from their observation.

II. Eclipses of the Moon.