Pentactaea Theory.—In opposition to the calycinal theory has been the Pentactaea theory of R. Semon. There have always been many zoologists prepared to ascribe an ancestral character to the holothurians. The absence of an apical system of plates; the fact that radial symmetry has not affected the generative organs, as it has in all other recent classes; the well-developed muscles of the body-wall, supposed to be directly inherited from some worm-like ancestor; the presence on the inner walls of the body in the family Synaptidae of ciliated funnels, which have been rashly compared to the excretory organs (nephridia) of many worms; the outgrowth from the rectum in other genera of caeca (Cuvierian organs and respiratory trees), which recall the anal glands of the Gephyrean worms; the absence of podia (tube-feet) in many genera, and even of the radial water-vessels in Synaptidae; the absence of that peculiar structure known in other echinoderms by the names “axial organ,” “ovoid gland,” &c.; the simpler form of the larva—all these features have, for good reason or bad, been regarded as primitive. Some of the more striking of these features are confined to Synaptidae; in that family too the absence of the radial water-vessels from the adult is correlated with continuity of the circular muscle-layer, while the gut runs almost straight from the anterior mouth to the posterior anus. Early in the life-history of Synapta occurs a stage with five tentacles around the mouth, and into these pass canals from the water-ring, the radial canals to the body-wall making a subsequent, and only temporary, appearance (fig. 4). Semon called this stage the Pentactula, and supposed that, in its early history, the class had passed through a similar stage, which he called the Pentactaea, and regarded as the ancestor of all Echinoderms. It has since been proved that the five tentacles with their canals are interradial, so that one can scarcely look on the Pentactula as a primitive stage, while the apparent simplicity of the Synaptidae, at least as compared with other holothurians, is now believed to be the result of regressive changes. The Pentactaea, at all events as it sprang from the brain of Semon, must pass to the limbo of mythological ancestors.
Pelmatozoic Theory.—The rejection of the calycinal and Pentactaea theories need not scatter our conceptions of Echinoderm structure back into the chaos from which they seemed to have emerged. The idea of a calyculate ancestor, though by no means connoting fixation, turned men’s minds in the direction of the fixed forms, simply because in them the calyx was best developed. The Pentactaea again suggested a search for some primitive type in which quinqueradiate symmetry was exhibited in circumoral appendages, but had not affected the nervous, water-vascular, muscular or skeletal systems to any great extent, and the generative organs not at all. Study of the earliest larval stages has always led to the conclusion that the Echinoderms must have descended from some freely-moving form with a bilateral symmetry, and, connecting this with the ideas just mentioned, we reach the conception that this supposed bilateral ancestor (or Dipleurula) may have become fixed, and may have gradually acquired a radial symmetry in consequence of its sedentary mode of life. The different extent of quinqueradiate symmetry in the different classes would thus depend on the period at which they diverged from the sedentary stock. The tracing of this history, and the explanation of the general characters of Echinoderms and of the differentiating features of the classes in accordance therewith, constitutes the Pelmatozoic theory.
The word “Pelmatozoa” literally means “stalked animals,” but the name is now used to denote all Cystidea, Blastoidea, Crinoidea and Edrioasteroidea, as opposed to the other classes, which may be called Eleutherozoa. Many Pelmatozoa have, it is true, no stalk, while some are freely-moving, but all agree in the possession of certain characters obviously connected with a fixed mode of life. Thus, the mouth is central and turned away from the sea-floor; the animal does not seize its food by tentacles, limbs or jaws, neither does it move in search of it, but a series of ciliated grooves which radiate from the mouth sweep along currents of water, in the eddies of which minute food-particles are caught up and carried down into the gullet; the undigested food is driven out through an anus which is on the upper or oral side of the theca, but as far distant as practicable from the mouth and ciliated grooves. Such characters are found in any primitive, sedentary group. More peculiarly Echinoderm features, in which the Pelmatozoan nature is manifest, are the enclosing of the viscera in a calcified and plated theca, for protection against those enemies from which a fixed animal cannot flee; the development, at the aboral pole of this theca, of a motor nerve-centre giving off branches to the stroma connecting the various plates of the theca and of its brachial, anal, and columnar extensions, and thus co-ordinating the movements of the whole skeleton; the absence of suckers from the podia, which, when present, are respiratory, not locomotor, in function. There are other features of most, if not all, Pelmatozoa that appear to be due to a fixed existence; but those are also found in the Eleutherozoa. The Pelmatozoic theory thus regards the Pelmatozoa as the more ancestral forms, and the Pelmatozoan stage as one that must have been passed through by all Echinoderms during their evolution from the Dipleurula. It might be possible to prove the origin of all classes from Pelmatozoa, without thereby explaining the origin of such fundamental features as radial symmetry, the developmental metamorphosis, and the torsion that affects both gut and body-cavities during that process; but the acceptance of a Dipleurula as the common ancestor necessitates an explanation of these features. Such explanation is an integral part of the Pelmatozoic theory, but is provided by no other.
The evidence for the Pelmatozoic theory is supplied by palaeontology, embryology, the comparative anatomy of the classes, and a consideration of other phyla. Palaeontology, so far as it goes, is a sure guide, but some of the oldest fossiliferous rocks yield remains of distinctly differentiated crinoids, asteroids and echinoids, so that the problem is not solved merely by collecting fossils. Two lines of argument appear fruitful. First, a comparison of the relative numbers of the representatives of the various classes at different epochs; according to this they may be placed in the following order, with the oldest first: Cystidea, Crinoidea, Blastoidea, Asteroidea, Ophiuroidea, Echinoidea. As for Holothuroidea, the fossil evidence allows us to say no more than that the class existed in early Carboniferous times, if not before. The second method is to work out by slow and sure steps the lines of descent of the different families, orders, and classes, and so either to arrive at the ancestral form of each class, or to plot out the curve of evolution, which may then legitimately be projected into “the dark backward and abysm of time.” In this way the many highly modified orders of Cystidea may be traced back to a simple, many-plated ancestor with little or no radiate symmetry (see below). All the complicated structures of Blastoidea are evolved from a fairly simple type, which in its turn is linked on to one of the cystid orders. That the crinoids are all deducible from some such simple form as that above described under the head “calycinal theory,” is now generally admitted. Although, in the extreme correlation of the radial food-grooves, nerves, water-vessels, and so forth, with a radiate symmetry of the theca, such a type differs from the Cystidea, while in the possession of jointed processes from the radial plates, bearing the grooves and the various body-systems outwards from the theca, it differs from all other Echinoderms, nevertheless ancient forms are known which, if they are not themselves the actual links, suggest how the crinoid type may have been evolved from some of the more regular cystids. The fourth class of Pelmatozoa—the Edrioasteroidea—differs from the others in the structure of its ambulacra. As in all Pelmatozoa these seem to have borne ciliated food-grooves protected by movable covering-plates (fig. 11). Beneath each food-groove was a radial water-vessel and probably a nerve and blood-vessel, all which structures passed either between certain regularly arranged thecal plates, or along a furrow floored by those plates, which were then in two alternating series. The important and distinctive feature is the presence of pores between the flooring-plates, on either side of the groove; and these, we cannot doubt, served for the passage of podia. Thus in a highly developed edrioasteroid, such as Edrioaster itself (fig. 11), there was a true ambulacrum, apparently constructed like that of a starfish, but differing in the possession of a ciliated food-groove protected by covering-plates. The simpler forms of Edrioasteroidea, with their more sac-like body and undifferentiated plates, may well have been derived from early Cystidea of yet simpler structure, and there seems no reason to follow Jaekel in regarding the class as itself the more primitive. Turning to fossil Asteroidea, we find the earlier ophiurids scarcely distinguishable from the asterids, while in the alternation of the ambulacrals, which undoubtedly correspond to the flooring-plates of Edrioaster, both groups approach the Pelmatozoan type. These facts have been expressed by Sturtz in his names Encrinasteriae and Ophio-encrinasteriae. There is no difficulty in deducing the highly differentiated asterids and ophiurids of a later day from these simpler types. The evolution of the modern Echinoidea from their Palaeozoic ancestors is also well understood, but in this case the ancestral form to which the palaeontologist is led does not at first sight present many resemblances to the Pelmatozoa. It is, however, characterized by simplicity of structure, and a short description of it will serve to clear the problem from unnecessary difficulties. Bothriocidaris (fig. 5), a small echinoid from the Ordovician rocks of Esthonia, is in essential structure just the form demanded by comparative palaeontology to make a starting-point. It is spheroidal, with the mouth and anus at opposite poles; there are five ambulacra, and the ambulacral plates are large, simple and alternating, each being pierced by two podial pores which lie in a small oval depression; the ambulacrals next the mouth form a closed ring of ten plates; the interambulacrals lie in single columns between the ambulacra, and are separated from the mouth-area by the proximal ambulacrals just mentioned, and sometimes by the second set of ambulacrals also; the ambulacra end in the five oculars or terminals, which meet in a ring around the anal area and have no podial pores, but one of them serves as a madreporite; within this ring is a star-shaped area filled with minute irregular plates, none of which can safely be selected as the homologues of the so-called basals or genitals of later forms; within the ring of ambulacrals around the mouth are five somewhat pointed plates, which Jaekel regards as teeth, but which can scarcely be homologous with the interradially placed teeth of later echinoids, since they are radial in position; small spines are present, especially around the podial pores. The position of the pores near the centre of the ambulacrals in Bothriocidaris need not be regarded as primitive, since other early Palaeozoic genera, not to mention the young of living forms, show that the podia originally passed out between the plates, and were only gradually surrounded by their substance; thus the original structure of the echinoid ambulacra differed from that of the early asteroid in the position of the radial vessels and nerves, which here lie beneath the plates instead of outside them. To this point we shall recur; palaeontology, though it suggests a clue, does not furnish an actual link either between Echinoidea and Asteroidea, or between those classes and Pelmatozoa.
| Fig. 5.—Bothriocidaris globulus. A, from the side; B, the plates around the aboral pole. (After Jaekel.) The short spines which were attached to the tubercles are not drawn. |
The argument from embryology leads further back. First, as already mentioned, it outlines the general features of the Dipleurula; secondly, it indicates the way in which this free-moving form became fixed, and how its internal organs were modified in consequence; but when we seek, thirdly, for light on the relations of the classes, we find the features of the adult coming in so rapidly that such intermediate stages as may have existed are either squeezed out or profoundly modified. The difficulty of rearing the larvae in an aquarium towards the close of the metamorphosis may account for the slight information available concerning the stages that immediately follow the embryonic. Another difficulty is due to the fact that the types studied, and especially the crinoid Antedon, are highly specialized, so that some of the embryonic features are not really primitive as regards the class, but only as regards each particular genus. Thus inferences from embryonic development need to be checked by palaeontology, and supplemented by comparison of the anatomy of other living genera.
Minute anatomical research has also aided to establish the Pelmatozoic theory by the gradual recognition in other classes of features formerly supposed to be confined to Pelmatozoa. Thus the elements of the Pelmatozoan ventral groove are now detected in so different a structure as the echinoid ambulacrum, while an aboral nervous system, the diminished representative of that in crinoids, has been traced in all Eleutherozoa except Holothurians. The broader theories of modern zoology might seem to have little bearing on the Echinoderma, for it is not long since the study of these animals was compared to a landlocked sea undisturbed by such storms as rage around the origin of the Vertebrata. This, however, is no more the case. The conception of the Dipleurula derives its chief weight from the fact that it is comparable to the early larval forms of other primitive coelomate animals, such as Balanoglossus, Phoronis, Chaetognatha, Brachiopoda and Bryozoa. So too the explanation of radial symmetry and torsion of organs as due to a Pelmatozoic mode of life finds confirmation in many other phyla. Instead of discussing all these questions separately, with the details necessary for an adequate presentation of the argument, we shall now sketch the history of the Echinoderms in accordance with the Pelmatozoic theory. Such a sketch must pass lightly over debatable ground, and must consist largely of suggestions still in need of confirmation; but if it serves as a frame into which more precise and more detailed statements may be fitted as they come to the ken of the reader, its object will be attained.
Evolution of the Echinoderms.—It is reasonable to suppose that the Coelomata—animals in which the body-cavity is divided into a gut passing from mouth to anus and a hollow (coelom) surrounding it—were derived from the simpler Coelentera, in which the primitive body-cavity (archenteron) is not so divided, and has only one aperture serving as both mouth and anus. We may, with Sedgwick, suppose the coelom to have originated by the enlargement and separation of pouches that pressed outwards from the archenteron into the thickened body-wall (such structures as the genital pouches of some Coelentera, not yet shut off from the rest of the cavity), and they would probably have been four in number and radially disposed about the central cavity. The evolution of this cavity into a gut is foreshadowed in some Coelentera by the elliptical shape of the aperture, and by the development at its ends of a ciliated channel along which food is swept; we have only to suppose the approximation of the sides of the ellipse and their eventual fusion, to complete the transformation of the radially symmetrical Coelenterate into a bilaterally symmetrical Coelomate with mouth and anus at opposite ends of the long axis. We further suppose that of the four coelomic pouches one was in front of the mouth, one behind the anus, and one on each side. Such an animal, if it ever existed, probably lived near the surface of the sea, and even here it may have changed its medusoid mode of locomotion for one in the direction of its mouth. Thus the bilateral symmetry would have been accentuated, and the organism shaped more definitely into three segments, namely (1) a preoral segment or lobe, containing the anterior coelomic cavity; (2) a middle segment, containing the gut, and the two middle coelomic cavities; (3) a posterior segment, containing the posterior coelomic cavity, which, however, owing to the backward prolongation of the anus, became divided into two—a right and left posterior coelom. Each of these cavities presumably excreted waste products to the exterior by a pore. There was probably a nervous area, with a tuft of cilia, at the anterior end; while, at all events in forms that remained pelagic, the ciliated nervous tracts of the rest of the body may be supposed to have become arranged in bands around the body-segments. Such a form as this is roughly represented to-day by the Actinotrocha larva of Phoronis, the importance of which has been brought out by Masterman. But only slight modifications are required to produce the Tornaria larva of the Enteropneusta and other larvae, including the special type that is inferred from the Dipleurula larval stages of recent forms to have characterized the ancestor of the Echinoderms. We cannot enter here into all the details of comparison between these larval forms; amid much that is hypothetical a few homologies are widely accepted, and the preceding account will show the kind of relation that the Echinoderms bear to other animals, including what are now usually regarded as the ancestors of the Chordata (to which back-boned animals belong), as well as the nature of the evidence that their study has been, or may be, made to yield. How the hypothetical Dipleurula became an Echinoderm, and how the primitive Echinoderms diverged in structure so as to form the various classes, are questions to which an answer is attempted in the following paragraphs:—
| Fig. 6.—Diagrammatic reconstruction of Dipleurula. The creature is represented crawling on the sea-floor, but it may equally well have been a floating animal. The ciliated bands are not drawn. |
Confining our attention to that form of Dipleurula (fig. 6) which, it is supposed, gave rise to the Echinoderma, we infer from embryological data that its special features were as follow:—The anterior coelomic cavity was wholly or partially divided, and from each half a duct led to the exterior, opening at a pore near the middle line of the back. The middle cavities were smaller, and the ducts from them came to unite with those from the anterior cavities, and no longer opened directly to the exterior; whether these cavities were already specialized as water-sacs cannot be asserted, but they certainly had become so at a slightly later stage. The posterior cavities were the largest, but what had become of their original opening to the exterior is uncertain. The genital products were derived from the lining of the coelomic cavities, but it would not be safe to say that any particular region was as yet specialized for generation. The epithelium of the outer surface was probably ciliated, and a portion of it in the preoral lobe differentiated as a sense-organ, with longer cilia and underlying nerve-centre, from which two nerves ran back below the ventral surface. Into the space between the walls of the coelom and the outer body-wall, originally filled with jelly, definite cells now wandered, chiefly derived from the coelomic walls. Some of these cells produced muscles and connective tissue; others absorbed and removed waste products, iron salts, calcium carbonate and the like, and so were ready to be utilized for the deposition of pigment or of skeletal substance. In some of these respects the Dipleurula may have diverged from the ancestor of Enteropneusta and of other animals, but it could not as yet have been recognized as echinodermal by a zoologist, for it presented none of the structural peculiarities of the modern adult echinoderm.