In the electrolysis of a concentrated solution of sodium acetate, hydrogen is evolved at the cathode and a mixture of ethane and carbon dioxide at the anode. According to H. Jahn,[2] the processes at the anode can be represented by the equations

2CH3·COO + H2O = 2CH3·COOH + O 2CH3·COOH + O = C2H6 + 2CO2 + H2O.

The hydrogen at the cathode is developed by the secondary action

2Na + 2H2O = 2NaOH + H2.

Many organic compounds can be prepared by taking advantage of secondary actions at the electrodes, such as reduction by the cathodic hydrogen, or oxidation at the anode (see [Electrochemistry]).

It is possible to distinguish between double salts and salts of compound acids. Thus J.W. Hittorf showed that when a current was passed through a solution of sodium platino-chloride, the platinum appeared at the anode. The salt must therefore be derived from an acid, chloroplatinic acid, H2PtCl6, and have the formula Na2PtCl6, the ions being Na and PtCl6”, for if it were a double salt it would decompose as a mixture of sodium chloride and platinum chloride and both metals would go to the cathode.

Early Theories of Electrolysis.—The obvious phenomena to be explained by any theory of electrolysis are the liberation of the products of chemical decomposition at the two electrodes while the intervening liquid is unaltered. To explain these facts, Theodor Grotthus (1785-1822) in 1806 put forward an hypothesis which supposed that the opposite chemical constituents of an electrolyte interchanged partners all along the line between the electrodes when a current passed. Thus, if the molecule of a substance in solution is represented by AB, Grotthus considered a chain of AB molecules to exist from one electrode to the other. Under the influence of an applied electric force, he imagined that the B part of the first molecule was liberated at the anode, and that the A part thus isolated united with the B part of the second molecule, which, in its turn, passed on its A to the B of the third molecule. In this manner, the B part of the last molecule of the chain was seized by the A of the last molecule but one, and the A part of the last molecule liberated at the surface of the cathode.

Chemical phenomena throw further light on this question. If two solutions containing the salts AB and CD be mixed, double decomposition is found to occur, the salts AD and CB being formed till a certain part of the first pair of substances is transformed into an equivalent amount of the second pair. The proportions between the four salts AB, CD, AD and CB, which exist finally in solution, are found to be the same whether we begin with the pair AB and CD or with the pair AD and CB. To explain this result, chemists suppose that both changes can occur simultaneously, and that equilibrium results when the rate at which AB and CD are transformed into AD and CB is the same as the rate at which the reverse change goes on. A freedom of interchange is thus indicated between the opposite parts of the molecules of salts in solution, and it follows reasonably that with the solution of a single salt, say sodium chloride, continual interchanges go on between the sodium and chlorine parts of the different molecules.

These views were applied to the theory of electrolysis by R.J.E. Clausius. He pointed out that it followed that the electric forces did not cause the interchanges between the opposite parts of the dissolved molecules but only controlled their direction. Interchanges must be supposed to go on whether a current passes or not, the function of the electric forces in electrolysis being merely to determine in what direction the parts of the molecules shall work their way through the liquid and to effect actual separation of these parts (or their secondary products) at the electrodes. This conclusion is supported also by the evidence supplied by the phenomena of electrolytic conduction (see [Conduction, Electric], § II.). If we eliminate the reverse electromotive forces of polarization at the two electrodes, the conduction of electricity through electrolytes is found to conform to Ohm’s law; that is, once the polarization is overcome, the current is proportional to the electromotive force applied to the bulk of the liquid. Hence there can be no reverse forces of polarization inside the liquid itself, such forces being confined to the surface of the electrodes. No work is done in separating the parts of the molecules from each other. This result again indicates that the parts of the molecules are effectively separate from each other, the function of the electric forces being merely directive.