The contact differences of potential at the interfaces of metals and electrolytes have been co-ordinated by Nernst with those at the surfaces of separation between different liquids. In contact with a solvent a metal is supposed to possess a definite solution pressure, analogous to the vapour pressure of a liquid. Metal goes into solution in the form of electrified ions. The liquid thus acquires a positive charge, and the metal a negative charge. The electric forces set up tend to prevent further separation, and finally a state of equilibrium is reached, when no more ions can go into solution unless an equivalent number are removed by voltaic action. On the analogy between this case and that of the interface between two solutions, Nernst has arrived at similar logarithmic expressions for the difference of potential, which becomes proportional to log (P1/P2) where P2 is taken to mean the osmotic pressure of the cations in the solution, and P1 the osmotic pressure of the cations in the substance of the metal itself. On these lines the equations of concentration cells, deduced above on less hypothetical grounds, may be regained.

Theory of Electrons.—Our views of the nature of the ions of electrolytes have been extended by the application of the ideas of the relations between matter and electricity obtained by the study of electric conduction through gases. The interpretation of the phenomena of gaseous conduction was rendered possible by the knowledge previously acquired of conduction through liquids; the newer subject is now reaching a position whence it can repay its debt to the older.

Sir J.J. Thomson has shown (see [Conduction, Electric], § III.) that the negative ions in certain cases of gaseous conduction are much more mobile than the corresponding positive ions, and possess a mass of about the one-thousandth part of that of a hydrogen atom. These negative particles or corpuscles seem to be the ultimate units of negative electricity, and may be identified with the electrons required by the theories of H.A. Lorentz and Sir J. Larmor. A body containing an excess of these particles is negatively electrified, and is positively electrified if it has parted with some of its normal number. An electric current consists of a moving stream of electrons. In gases the electrons sometimes travel alone, but in liquids they are always attached to matter, and their motion involves the movement of chemical atoms or groups of atoms. An atom with an extra corpuscle is a univalent negative ion, an atom with one corpuscle detached is a univalent positive ion. In metals the electrons can slip from one atom to the next, since a current can pass without chemical action. When a current passes from an electrolyte to a metal, the electron must be detached from the atom it was accompanying and chemical action be manifested at the electrode.

Bibliography.—Michael Faraday, Experimental Researches in Electricity (London, 1844 and 1855); W. Ostwald, Lehrbuch der allgemeinen Chemie, 2te Aufl. (Leipzig, 1891); Elektrochemie (Leipzig, 1896); W Nernst, Theoretische Chemie, 3te Aufl. (Stuttgart, 1900; English translation, London, 1904); F. Kohlrausch and L. Holborn, Das Leitvermögen der Elektrolyte (Leipzig, 1898); W.C.D. Whetham, The Theory of Solution and Electrolysis (Cambridge, 1902); M. Le Blanc, Elements of Electrochemistry (Eng. trans., London, 1896); S. Arrhenius, Text-Book of Electrochemistry (Eng. trans., London, 1902); H.C. Jones, The Theory of Electrolytic Dissociation (New York, 1900); N. Munroe Hopkins, Experimental Electrochemistry (London, 1905); Lüphe, Grundzüge der Elektrochemie (Berlin, 1896).

Some of the more important papers on the subject have been reprinted for Harper’s Series of Scientific Memoirs in Electrolytic Conduction (1899) and the Modern Theory of Solution (1899). Several journals are published specially to deal with physical chemistry, of which electrochemistry forms an important part. Among them may be mentioned the Zeitschrift für physikalische Chemie (Leipzig); and the Journal of Physical Chemistry (Cornell University). In these periodicals will be found new work on the subject and abstracts of papers which appear in other physical and chemical publications.

(W. C. D. W.)


[1] See Hittorf, Pogg. Ann. cvi. 517 (1859).

[2] Grundriss der Elektrochemie (1895), p. 292; see also F. Kaufler and C. Herzog, Ber., 1909, 42, p. 3858.

[3] Brit. Ass. Rep., 1906, Section A, Presidential Address.