The length of the air gap is 0.1 cm., its section 2 sq. cms., and its permeability is unity. Hence the reluctance of the air gap is

0.1= 1C.G.S. unit.
1 × 2 20

Accordingly the magnetomotive force in ampere-turns required to produce the required flux is equal to

0.8 (24,000) ( 1+ 220) = 1070 nearly.
20 38640

It follows that the part of the magnetomotive force required to overcome the reluctance of the narrow air gap is about nine times that required for the iron alone.

In the above example we have for simplicity assumed that the flux in passing across the air gap does not spread out at all. In dealing with electromagnet design in dynamo construction we have, however, to take into consideration the spreading as well as the leakage of flux across the circuit (see [Dynamo]). It will be seen, therefore, that in order that we may predict the effect of a certain kind of iron or steel when used as the core of an electromagnet, we must be provided with tables or curves showing the reluctivity or permeability corresponding to various flux densities or—which comes to the same thing—with (B, H) curves for the sample.

Iron and Steel for Electromagnetic Machinery.—In connexion with the technical application of electromagnets such as those used in the field magnets of dynamos (q.v.), the testing of different kinds of iron and steel for magnetic permeability has therefore become very important. Various instruments called permeameters and hysteresis meters have been designed for this purpose, but much of the work has been done by means of a ballistic galvanometer and test ring as above described. The “hysteresis” of an iron or steel is that quality of it in virtue of which energy is dissipated as heat when the magnetization is reversed or carried through a cycle (see [Magnetism]), and it is generally measured either in ergs per cubic centimetre of metal per cycle of magnetization, or in watts per ℔ per 50 or 100 cycles per second at or corresponding to a certain maximum flux density, say 2500 or 600 C.G.S. units. For the details of various forms of permeameter and hysteresis meter technical books must be consulted.[3]

An immense number of observations have been carried out on the magnetic permeability of different kinds of iron and steel, and in the following tables are given some typical results, mostly from experiments made by J.A. Ewing (see Proc. Inst. C.E., 1896, 126, p. 185) in which the ballistic method was employed to determine the flux density corresponding to various magnetizing forces acting upon samples of iron and steel in the form of rings.

The figures under heading I. are values given in a paper by A.W.S. Pocklington and F. Lydall (Proc. Roy. Soc., 1892-1893, 52, pp. 164 and 228) as the results of a magnetic test of an exceptionally pure iron supplied for the purpose of experiment by Colonel Dyer, of the Elswick Works. The substances other than iron in this sample were stated to be: carbon, trace; silicon, trace; phosphorus, none; sulphur, 0.013%; manganese, 0.1%. The other five specimens, II. to VI., are samples of commercial iron or steel. No. II. is a sample of Low Moor bar iron forged into a ring, annealed and turned. No. III. is a steel forging furnished by Mr R. Jenkins as a sample of forged ingot-metal for dynamo magnets. No. IV. is a steel casting for dynamo magnets, unforged, made by Messrs Edgar Allen & Company by a special pneumatic process under the patents of Mr A. Tropenas. No. V. is also an unforged steel casting for dynamo magnets, made by Messrs Samuel Osborne & Company by the Siemens process. No. VI. is also an unforged steel casting for dynamo magnets, made by Messrs Fried. Krupp, of Essen.

Table I.—Magnetic Flux Density corresponding to various Magnetizing Forces in the case of certain Samples of Iron and Steel (Ewing).