For ordinary metallurgical work the electric furnace, requiring as it does (excepting where waterfalls or other cheap sources of power are available) the intervention of the boiler and steam-engine, or of the gas or oil engine, with a Uses and advantages. consequent loss of energy, has not usually proved so economical as an ordinary direct fired furnace. But in some cases in which the current is used for electrolysis and for the production of extremely high temperatures, for which the calorific intensity of ordinary fuel is insufficient, the electric furnace is employed with advantage. The temperature of the electric furnace, whether of the arc or incandescence type, is practically limited to that at which the least easily vaporized material available for electrodes is converted into vapour. This material is carbon, and as its vaporizing point is (estimated at) over 3500° C., and less than 4000° C., the temperature of the electric furnace cannot rise much above 3500° C. (6330° F.); but H. Moissan showed that at this temperature the most stable of mineral combinations are dissociated, and the most refractory elements are converted into vapour, only certain borides, silicides and metallic carbides having been found to resist the action of the heat. It is not necessary that all electric furnaces shall be run at these high temperatures; obviously, those of the incandescence or resistance type may be worked at any convenient temperature below the maximum. The electric furnace has several advantages as compared with some of the ordinary types of furnace, arising from the fact that the heat is generated from within the mass of material operated upon, and (unlike the blast-furnace, which presents the same advantage) without a large volume of gaseous products of combustion and atmospheric nitrogen being passed through it. In ordinary reverberatory and other heating furnaces the burning fuel is without the mass, so that the vessel containing the charge, and other parts of the plant, are raised to a higher temperature than would otherwise be necessary, in order to compensate for losses by radiation, convection and conduction. This advantage is especially observed in some cases in which the charge of the furnace is liable to attack the containing vessel at high temperatures, as it is often possible to maintain the outer walls of the electric furnace relatively cool, and even to keep them lined with a protecting crust of unfused charge. Again, the construction of electric furnaces may often be exceedingly crude and simple; in the carborundum furnace, for example, the outer walls are of loosely piled bricks, and in one type of furnace the charge is simply heaped on the ground around the carbon resistance used for heating, without containing-walls of any kind. There is, however, one (not insuperable) drawback in the use of the electric furnace for the smelting of pure metals. Ordinarily carbon is used as the electrode material, but when carbon comes in contact at high temperatures with any metal that is capable of forming a carbide a certain amount of combination between them is inevitable, and the carbon thus introduced impairs the mechanical properties of the ultimate metallic product. Aluminium, iron, platinum and many other metals may thus take up so much carbon as to become brittle and unforgeable. It is for this reason that Siemens, Borchers and others substituted a hollow water-cooled metal block for the carbon cathode upon which the melted metal rests while in the furnace. Liquid metal coming in contact with such a surface forms a crust of solidified metal over it, and this crust thickens up to a certain point, namely, until the heat from within the furnace just overbalances that lost by conduction through the solidified crust and the cathode material to the flowing water. In such an arrangement, after the first instant, the melted metal in the furnace does not come in contact with the cathode material.

Electrothermal Processes.—In these processes the electric current is used solely to generate heat, either to induce chemical reactions between admixed substances, or to produce a physical (allotropic) modification of a given substance. Borchers predicted that, at the high temperatures available with the electric furnace, every oxide would prove to be reducible by the action of carbon, and this prediction has in most instances been justified. Alumina and lime, for example, which cannot be reduced at ordinary furnace temperatures, readily give up their oxygen to carbon in the electric furnace, and then combine with an excess of carbon to form metallic carbides. In 1885 the brothers Cowles patented a process for the electrothermal reduction of oxidized ores by exposure to an intense current of electricity when admixed with carbon in a retort. Later in that year they patented a process for the reduction of aluminium by carbon, and in 1886 an electric furnace with sliding carbon rods passed through the end walls to the centre of a rectangular furnace. The impossibility of working with just sufficient carbon to reduce the alumina, without using any excess which would be free to form at least so much carbide as would suffice, when diffused through the metal, to render it brittle, practically restricts the Aluminium alloys. use of such processes to the production of aluminium alloys. Aluminium bronze (aluminium and copper) and ferro-aluminium (aluminium and iron) have been made in this way; the latter is the more satisfactory product, because a certain proportion of carbon is expected in an alloy of this character, as in ferromanganese and cast iron, and its presence is not objectionable. The furnace is built of fire-brick, and may measure (internally) 5 ft. in length by 1 ft. 8 in. in width, and 3 ft. in height. Into each end wall is built a short iron tube sloping downwards towards the centre, and through this is passed a bundle of five 3-in. carbon rods, bound together at the outer end by being cast into a head of cast iron for use with iron alloys, or of cast copper for aluminium bronze. This head slides freely in the cast iron tubes, and is connected by a copper rod with one of the terminals of the dynamo supplying the current. The carbons can thus, by the application of suitable mechanism, be withdrawn from or plunged into the furnace at will. In starting the furnace, the bottom is prepared by ramming it with charcoal-powder that has been soaked in milk of lime and dried, so that each particle is coated with a film of lime, which serves to reduce the loss of current by conduction through the lining when the furnace becomes hot. A sheet iron case is then placed within the furnace, and the space between it and the walls rammed with limed charcoal; the interior is filled with fragments of the iron or copper to be alloyed, mixed with alumina and coarse charcoal, broken pieces of carbon being placed in position to connect the electrodes. The iron case is then removed, the whole is covered with charcoal, and a cast iron cover with a central flue is placed above all. The current, either continuous or alternating, is then started, and continued for about 1 to 1½ hours, until the operation is complete, the carbon rods being gradually withdrawn as the action proceeds. In such a furnace a continuous current, for example, of 3000 amperes, at 50 to 60 volts, may be used at first, increasing to 5000 amperes in about half an hour. The reduction is not due to electrolysis, but to the action of carbon on alumina, a part of the carbon in the charge being consumed and evolved as carbon monoxide gas, which burns at the orifice in the cover so long as reduction is taking place. The reduced aluminium alloys itself immediately with the fused globules of metal in its midst, and as the charge becomes reduced the globules of alloy unite until, in the end, they are run out of the tap-hole after the current has been diverted to another furnace. It was found in practice (in 1889) that the expenditure of energy per pound of reduced aluminium was about 23 H.P.-hours, a number considerably in excess of that required at the present time for the production of pure aluminium by the electrolytic process described in the article [Aluminium]. Calcium carbide, graphite (q.v.), phosphorus (q.v.) and carborundum (q.v.) are now extensively manufactured by the operations outlined above.

Electrolytic Processes.—The isolation of the metals sodium and potassium by Sir Humphry Davy in 1807 by the electrolysis of the fused hydroxides was one of the earliest applications of the electric current to the extraction of metals. This pioneering work showed little development until about the middle of the 19th century. In 1852 magnesium was isolated electrolytically by R. Bunsen, and this process subsequently received much attention at the hands of Moissan and Borchers. Two years later Bunsen and H.E. Sainte Claire Deville working independently obtained aluminium (q.v.) by the electrolysis of the fused double sodium aluminium chloride. Since that date other processes have been devised and the electrolytic processes have entirely replaced the older methods of reduction with sodium. Methods have also been discovered for the electrolytic manufacture of calcium (q.v.), which have had the effect of converting a laboratory curiosity into a product of commercial importance. Barium and strontium have also been produced by electro-metallurgical methods, but the processes have only a laboratory interest at present. Lead, zinc and other metals have also been reduced in this manner.

For further information the following books, in addition to those mentioned at the end of the article [Electrochemistry], may be consulted: Borchers, Handbuch der Elektrochemie; Electric Furnaces (Eng. trans. by H.G. Solomon, 1908); Moissan, The Electric Furnace (1904); J. Escard, Fours électriques (1905); Les Industries électrochimiques (1907).

(W. G. M.)


[1] Cf. Siemens’s account of the use of this furnace for experimental purposes in British Association Report for 1882.


ELECTROMETER, an instrument for measuring difference of potential, which operates by means of electrostatic force and gives the measurement either in arbitrary or in absolute units (see [Units, Physical]). In the last case the instrument is called an absolute electrometer. Lord Kelvin has classified electrometers into (1) Repulsion, (2) Attracted disk, and (3) Symmetrical electrometers (see W. Thomson, Brit. Assoc. Report, 1867, or Reprinted Papers on Electrostatics and Magnetization, p. 261).

Repulsion Electrometers.—The simplest form of repulsion electrometer is W. Henley’s pith ball electrometer (Phil. Trans., 1772, 63, p. 359) in which the repulsion of a straw ending in a pith ball from a fixed stem is indicated on a graduated arc (see [Electroscope]). A double pith ball repulsion electrometer was employed by T. Cavallo in 1777.