the equations of the two latter types being necessitated by the conditions of compatibility of strain-components. The solutions of these equations have to be adjusted so that the boundary conditions of the type (2) may be satisfied.

40. It is evident that whichever method is adopted the mathematical problem is in general very complicated. It is also evident that, if we attempt to proceed by help of some intuition as to the nature of the stress or strain, our intuition ought to satisfy the tests provided by the above systems of equations. Neglect of this precaution has led to many errors. Another source of frequent error lies in the neglect of the conditions in which the above systems of equations are correct. They are obtained by help of the supposition that the relative displacements of the parts of the strained body are small. The solutions of them must therefore satisfy the test of smallness of the relative displacements.

41. Torsion.—As a first example of the application of the theory we take the problem of the torsion of prisms. This problem, considered first by C.A. Coulomb in 1784, was finally solved by B. de Saint-Venant in 1855. The problem is this:—A cylindrical or prismatic bar is held twisted by terminal couples; it is required to determine the state of stress and strain in the interior. When the bar is a circular cylinder the problem is easy. Any section is displaced by rotation about the central-line through a small angle, which is proportional to the distance z of the section from a fixed plane at right angles to this line. This plane is a terminal section if one of the two terminal sections is not displaced. The angle through which the section z rotates is τz, where τ is a constant, called the amount of the twist; and this constant τ is equal to G/μI, where G is the twisting couple, and I is the moment of inertia of the cross-section about the central-line. This result is often called “Coulomb’s law.” The stress within the bar is shearing stress, consisting, as it must, of two sets of equal tangential tractions on two sets of planes which are at right angles to each other. These planes are the cross-sections and the axial planes of the bar. The tangential traction at any point of the cross-section is directed at right angles to the axial plane through the point, and the tangential traction on the axial plane is directed parallel to the length of the bar. The amount of either at a distance r from the axis is μτr or Gr/I. The result that G = μτI can be used to determine μ experimentally, for τ may be measured and G and I are known.

42. When the cross-section of the bar is not circular it is clear that this solution fails; for the existence of tangential traction, near the prismatic bounding surface, on any plane which does not cut this surface at right angles, implies the existence of traction applied to this surface. We may attempt to modify the theory by retaining the supposition that the stress consists of shearing stress, involving tangential traction distributed in some way over the cross-sections. Such traction is obviously a necessary constituent of any stress-system which could be produced by terminal couples around the axis. We should then know that there must be equal tangential traction directed along the length of the bar, and exerted across some planes or other which are parallel to this direction. We should also know that, at the bounding surface, these planes must cut this surface at right angles. The corresponding strain would be shearing strain which could involve (i.) a sliding of elements of one cross-section relative to another, (ii.) a relative sliding of elements of the above mentioned planes in the direction of the length of the bar. We could conclude that there may be a longitudinal displacement of the elements of the cross-sections. We should then attempt to satisfy the conditions of the problem by supposing that this is the character of the strain, and that the corresponding displacement consists of (i.) a rotation of the cross-sections in their planes such as we found in the case of the circle, (ii.) a distortion of the cross-sections into curved surfaces by a displacement (w) which is directed normally to their planes and varies in some manner from point to point of these planes. We could show that all the conditions of the problem are satisfied by this assumption, provided that the longitudinal displacement (w), considered as a function of the position of a point (x, y) in the cross-section, satisfies the equation

∂²w+ ∂²w= 0,
∂x² ∂y²

(1)

and the boundary condition

( ∂w− τy ) cos(x, ν) + ( ∂w+ τx ) cos(y, ν) = 0,
∂x ∂y

(2)

where τ denotes the amount of the twist, and ν the direction of the normal to the boundary. The solution is known for a great many forms of section. (In the particular case of a circular section w vanishes.) The tangential traction at any point of the cross-section is directed along the tangent to that curve of the family ψ = const. which passes through the point, ψ being the function determined by the equations