52. As regards the strain in the beam, the longitudinal and lateral extensions and contractions depend on the bending moment in the same way as in the simpler problem; but, the bending moment being variable, the anticlastic curvature produced is also variable. In addition to these extensions and contractions there are shearing strains corresponding to the shearing stresses T, U. The shearing strain corresponding to T consists of a relative sliding parallel to the central-line of different longitudinal linear elements combined with a relative sliding in a transverse horizontal direction of elements of different cross-sections; the latter of these is concerned in the production of those displacements by which the variable anticlastic curvature is brought about; to see the effect of the former we may most suitably consider, for the case of an elliptic cross-section, the distortion of the shape of a rectangular portion of a plane of the material which in the natural state was horizontal; all the boundaries of such a portion become parabolas of small curvature, which is variable along the length of the beam, and the particular effect under consideration is the change of the transverse horizontal linear elements from straight lines such as HK to parabolas such as H’K’ (fig. 15); the lines HL and KM are parallel to the central-line, and the figure is drawn for a plane above the neutral plane. When the cross-section is not an ellipse the character of the strain is the same, but the curves are only approximately parabolic.

The shearing strain corresponding to U is a distortion which has the effect that the straight vertical filaments become curved lines which cut the longitudinal filaments obliquely, and thus the cross-sections do not remain plane, but become curved surfaces, and the tangent plane to any one of these surfaces at the centroid cuts the central line obliquely (fig. 16). The angle between these tangent planes and the central-line is the same at all points of the line; and, if it is denoted by ½π + s0, the value of s0 is expressible as

shearing stress at centroid,
rigidity of material

and it thus depends on the shape of the cross-section; for the elliptic section of § 50 its value is

4W 2a² (1 + σ) + b²;
Eπab 3a² + b²

for a circle (with σ = ¼) this becomes 7W / 2Eπa². The vertical filament through the centroid of any cross-section becomes a cubical parabola, as shown in fig. 16, and the contour lines of the curved surface into which any cross-section is distorted are shown in fig. 17 for a circular section.

Fig. 16.
Fig. 17.

53. The deflection of the beam is determined from the equation

curvature of central line = bending moment ÷ flexural rigidity,