“When the plates A and B are opposite each other, the two fixed plates A and C may be considered as one mass, and the revolving plate B, together with the ball D, will constitute another mass. All the experiments yet made concur to prove that these two masses will not possess the same electric state.... The redundant electricities in the masses under consideration will be unequally distributed; the plate A will have about ninety-nine parts, and the plate C one; and, for the same reason, the revolving plate B will have ninety-nine parts of the opposite electricity, and the ball D one. The rotation, by destroying the contacts, preserves this unequal distribution, and carries B from A to C at the same time that the tail K connects the ball with the plate C. In this situation, the electricity in B acts upon that in C, and produces the contrary state, by virtue of the communication between C and the ball; which last must therefore acquire an electricity of the same kind with that of the revolving plate. But the rotation again destroys the contact and restores B to its first situation opposite A. Here, if we attend to the effect of the whole revolution, we shall find that the electric states of the respective masses have been greatly increased; for the ninety-nine parts in A and B remain, and the one part of electricity in C has been increased so as nearly to compensate ninety-nine parts of the opposite electricity in the revolving plate B, while the communication produced an opposite mutation in the electricity of the ball. A second rotation will, of course, produce a proportional augmentation of these increased quantities; and a continuance of turning will soon bring the intensities to their maximum, which is limited by an explosion between the plates” (Phil. Trans., 1788, p. 405).

Fig. 4.—Belli’s Doubler.

Nicholson described also another apparatus, the “spinning condenser,” which worked on the same principle. Bennet and Nicholson were followed by T. Cavallo, John Read, Bohnenberger, C.B. Désormes and J.N.P. Hachette Belli’s doubler. and others in the invention of various forms of rotating doubler. A simple and typical form of doubler, devised in 1831 by G. Belli (fig. 4), consisted of two curved metal plates between which revolved a pair of balls carried on an insulating stem. Following the nomenclature usual in connexion with dynamos we may speak of the conductors which carry the initial charges as the field plates, and of the moving conductors on which are induced the charges which are subsequently added to those on the field plates, as the carriers. The wire which connects two armature plates for a moment is the neutralizing conductor. The two curved metal plates constitute the field plates and must have original charges imparted to them of opposite sign. The rotating balls are the carriers, and are connected together for a moment by a wire when in a position to be acted upon inductively by the field plates, thus acquiring charges of opposite sign. The moment after they are separated again. The rotation continuing the ball thus negatively charged is made to give up this charge to that negatively electrified field plate, and the ball positively charged its charge to the positively electrified field plate, by touching little contact springs. In this manner the field plates accumulate charges of opposite sign.

Fig. 5.—Varley’s Machine.

Modern types of influence machine may be said to date from 1860 when C.F. Varley patented a type of influence machine which has been the parent of numerous subsequent forms (Brit. Pat. Spec. No. 206 of 1860). In it the Varley’s machine. field plates were sheets of tin-foil attached to a glass plate (fig. 5). In front of them a disk of ebonite or glass, having carriers of metal fixed to its edge, was rotated by a winch. In the course of their rotation two diametrically opposite carriers touched against the ends of a neutralizing conductor so as to form for a moment one conductor, and the moment afterwards these two carriers were insulated, one carrying away a positive charge and the other a negative. Continuing their rotation, the positively charged carrier gave up its positive charge by touching a little knob attached to the positive field plate, and similarly for the negative charge carrier. In this way the charges on the field plates were continually replenished and reinforced. Varley also constructed a multiple form of influence machine having six rotating disks, each having a number of carriers and rotating between field plates. With this apparatus he obtained sparks 6 in. long, the initial source of electrification being a single Daniell cell.

Varley was followed by A.J.I. Toepler, who in 1865 constructed an influence machine consisting of two disks fixed on the same shaft and rotating in the same direction. Each disk carried two strips of tin-foil extending Toepler machine. nearly over a semi-circle, and there were two field plates, one behind each disk; one of the plates was positively and the other negatively electrified. The carriers which were touched under the influence of the positive field plate passed on and gave up a portion of their negative charge to increase that of the negative field plate; in the same way the carriers which were touched under the influence of the negative field plate sent a part of their charge to augment that of the positive field plate. In this apparatus one of the charging rods communicated with one of the field plates, but the other with the neutralizing brush opposite to the other field plate. Hence one of the field plates would always remain charged when a spark was taken at the transmitting terminals.

Fig. 6.—Holtz’s Machine.

Between 1864 and 1880, W.T.B. Holtz constructed and described a large number of influence machines which were for a long time considered the most advanced development of this type of electrostatic machine. In one form the Holtz machine. Holtz machine consisted of a glass disk mounted on a horizontal axis F (fig. 6) which could be made to rotate at a considerable speed by a multiplying gear, part of which is seen at X. Close behind this disk was fixed another vertical disk of glass in which were cut two windows B, B. On the side of the fixed disk next the rotating disk were pasted two sectors of paper A, A, with short blunt points attached to them which projected out into the windows on the side away from the rotating disk. On the other side of the rotating disk were placed two metal combs C, C, which consisted of sharp points set in metal rods and were each connected to one of a pair of discharge balls E, D, the distance between which could be varied. To start the machine the balls were brought in contact, one of the paper armatures electrified, say, with positive electricity, and the disk set in motion. Thereupon very shortly a hissing sound was heard and the machine became harder to turn as if the disk were moving through a resisting medium. After that the discharge balls might be separated a little and a continuous series of sparks or brush discharges would take place between them. If two Leyden jars L, L were hung upon the conductors which supported the combs, with their outer coatings put in connexion with one another by M, a series of strong spark discharges passed between the discharge balls. The action of the machine is as follows: Suppose one paper armature to be charged positively, it acts by induction on the right hand comb, causing negative electricity to issue from the comb points upon the glass revolving disk; at the same time the positive electricity passes through the closed discharge circuit to the left comb and issues from its teeth upon the part of the glass disk at the opposite end of the diameter. This positive electricity electrifies the left paper armature by induction, positive electricity issuing from the blunt point upon the side farthest from the rotating disk. The charges thus deposited on the glass disk are carried round so that the upper half is electrified negatively on both sides and the lower half positively on both sides, the sign of the electrification being reversed as the disk passes between the combs and the armature by discharges issuing from them respectively. If it were not for leakage in various ways, the electrification would go on everywhere increasing, but in practice a stationary state is soon attained. Holtz’s machine is very uncertain in its action in a moist climate, and has generally to be enclosed in a chamber in which the air is kept artificially dry.

Robert Voss, a Berlin instrument maker, in 1880 devised a form of machine in which he claimed that the principles of Toepler and Holtz were combined. On a rotating glass or ebonite disk were placed carriers of tin-foil or metal buttons Voss’s machine. against which neutralizing brushes touched. This armature plate revolved in front of a field plate carrying two pieces of tin-foil backed up by larger pieces of varnished paper. The studs on the armature plate were charged inductively by being connected for a moment by a neutralizing wire as they passed in front of the field plates, and then gave up their charges partly to renew the field charges and partly to collecting combs connected to discharge balls. In general design and construction, the manner of moving the rotating plate and in the use of the two Leyden jars in connexion with the discharge balls, Voss borrowed his ideas from Holtz.

All the above described machines, however, have been thrown into the shade by the invention of a greatly improved type of influence machine first constructed by James Wimshurst about 1878. Two glass disks are mounted on two shafts Wimshurst machine. in such a manner that, by means of two belts and pulleys worked from a winch shaft, the disks can be rotated rapidly in opposite directions close to each other (fig. 7). These glass disks carry on them a certain number (not less than 16 or 20) tin-foil carriers which may or may not have brass buttons upon them. The glass plates are well varnished, and the carriers are placed on the outer sides of the two glass plates. As therefore the disks revolve, these carriers travel in opposite directions, coming at intervals in opposition to each other. Each upright bearing carrying the shafts of the revolving disks also carries a neutralizing conductor or wire ending in a little brush of gilt thread. The neutralizing conductors for each disk are placed at right angles to each other. In addition there are collecting combs which occupy an intermediate position and have sharp points projecting inwards, and coming near to but not touching the carriers. These combs on opposite sides are connected respectively to the inner coatings of two Leyden jars whose outer coatings are in connexion with one another.