The reader may be referred for an admirable summary of the theories of electricity prior to the advent of the electronic hypothesis to J.J. Thomson’s “Report on Electrical Theories” (Brit. Assoc. Report, 1885), in which he divides electrical theories enunciated during the 19th century into four classes, and summarizes the opinions and theories of A.M. Ampère, H.G. Grassman, C.F. Gauss, W.E. Weber, G.F.B. Riemann, R.J.E. Clausius, F.E. Neumann and H. von Helmholtz.

Bibliography.—M. Faraday, Experimental Researches in Electricity (3 vols., London, 1839, 1844, 1855); A.A. De la Rive, Treatise on Electricity (3 vols., London, 1853, 1858); J. Clerk Maxwell, A Treatise on Electricity and Magnetism (2 vols., 3rd ed., 1892); id., Scientific Papers (2 vols., edited by Sir W.J. Niven, Cambridge, 1890); H.M. Noad, A Manual of Electricity (2 vols., London, 1855, 1857); J.J. Thomson, Recent Researches in Electricity and Magnetism (Oxford, 1893); id., Conduction of Electricity through Gases (Cambridge, 1903); id., Electricity and Matter (London, 1904); O. Heaviside, Electromagnetic Theory (London, 1893); O.J. Lodge, Modern Views of Electricity (London, 1889); E. Mascart and J. Joubert, A Treatise on Electricity and Magnetism, English trans. by E. Atkinson (2 vols., London, 1883); Park Benjamin, The Intellectual Rise in Electricity (London, 1895); G.C. Foster and A.W. Porter, Electricity and Magnetism (London, 1903); A. Gray, A Treatise on Magnetism and Electricity (London, 1898); H.W. Watson and S.H. Burbury, The Mathematical Theory of Electricity and Magnetism (2 vols., 1885); Lord Kelvin (Sir William Thomson), Mathematical and Physical Papers (3 vols., Cambridge, 1882); Lord Rayleigh, Scientific Papers (4 vols., Cambridge, 1903); A. Winkelmann, Handbuch der Physik, vols. iii. and iv. (Breslau, 1903 and 1905; a mine of wealth for references to original papers on electricity and magnetism from the earliest date up to modern times). For particular information on the modern Electronic theory the reader may consult W. Kaufmann, “The Developments of the Electron Idea.” Physikalische Zeitschrift (1st of Oct. 1901), or The Electrician (1901), 48, p. 95; H.A. Lorentz, The Theory of Electrons (1909); E.E. Fournier d’Albe, The Electron Theory (London, 1906); H. Abraham and P. Langevin, Ions, Electrons, Corpuscles (Paris, 1905); J.A. Fleming, “The Electronic Theory of Electricity,” Popular Science Monthly (May 1902); Sir Oliver J. Lodge, Electrons, or the Nature and Properties of Negative Electricity (London, 1907).

(J. A. F.)


[1] Gilbert’s work, On the Magnet, Magnetic Bodies and the Great Magnet, the Earth, has been translated from the rare folio Latin edition of 1600, but otherwise reproduced in its original form by the chief members of the Gilbert Club of England, with a series of valuable notes by Prof. S.P. Thompson (London, 1900). See also The Electrician, February 21, 1902.

[2] See The Intellectual Rise in Electricity, ch. x., by Park Benjamin (London, 1895).

[3] See Sir Oliver Lodge, “Lightning, Lightning Conductors and Lightning Protectors,” Journ. Inst. Elec. Eng. (1889), 18, p. 386, and the discussion on the subject in the same volume; also the book by the same author on Lightning Conductors and Lightning Guards (London, 1892).

[4] The Electrical Researches of the Hon. Henry Cavendish 1771-1781, edited from the original manuscripts by J. Clerk Maxwell, F.R.S. (Cambridge, 1879).

[5] In 1878 Clerk Maxwell repeated Cavendish’s experiments with improved apparatus and the employment of a Kelvin quadrant electrometer as a means of detecting the absence of charge on the inner conductor after it had been connected to the outer case, and was thus able to show that if the law of electric attraction varies inversely as the nth power of the distance, then the exponent n must have a value of 2±1⁄21600. See Cavendish’s Electrical Researches, p. 419.

[6] Modern researches have shown that the loss of charge is in fact dependent upon the ionization of the air, and that, provided the atmospheric moisture is prevented from condensing on the insulating supports, water vapour in the air does not per se bestow on it conductance for electricity.