ELECTROCUTION (an anomalous derivative from “electro-execution”; syn. “electrothanasia”), the popular name, invented in America, for the infliction of the death penalty on criminals (see [Capital Punishment]) by passing through the body of the condemned a sufficient current of electricity to cause death. The method was first adopted by the state of New York, a law making this method obligatory having been passed and approved by the governor on the 4th of June 1888. The law provides that there shall be present, in addition to the warden, two physicians, twelve reputable citizens of full age, seven deputy sheriffs, and such ministers, priests or clergymen, not exceeding two, as the criminal may request. A post-mortem examination of the body of the convict is required, and the body, unless claimed by relatives, is interred in the prison cemetery with a sufficient quantity of quicklime to consume it. The law became effective in New York on the 1st of January 1889. The first criminal to be executed by electricity was William Kemmler, on the 6th of August 1890, at Auburn prison. The validity of the New York law had previously been attacked in regard to this case (Re Kemmler, 1889; 136 U.S. 436), as providing “a cruel and unusual punishment” and therefore being contrary to the Constitution; but it was sustained in the state courts and finally in the Federal courts. By 1906 about one hundred and fifteen murderers had been successfully executed by electricity in New York state in Sing Sing, Auburn and Dannemora prisons. The method has also been adopted by the states of Ohio (1896), Massachusetts (1898), New Jersey (1906), Virginia (1908) and North Carolina (1910).

The apparatus consists of a stationary engine, an alternating dynamo capable of generating a current at a pressure of 2000 volts, a “death-chair” with adjustable head-rest, binding straps and adjustable electrodes devised by E.F. Davis, the state electrician of New York. The voltmeter, ammeter and switch-board controlling the current are located in the execution-room; the dynamo-room is communicated with by electric signals. Before each execution the entire apparatus is thoroughly tested. When everything is in readiness the criminal is brought in and seats himself in the death-chair. His head, chest, arms and legs are secured by broad straps; one electrode thoroughly moistened with salt-solution is affixed to the head, and another to the calf of one leg, both electrodes being moulded so as to secure good contact. The application of the current is usually as follows: the contact is made with a high voltage (1700-1800 volts) for 5 to 7 seconds, reduced to 200 volts until a half-minute has elapsed; raised to high voltage for 3 to 5 seconds, again reduced to low voltage for 3 to 5 seconds, again reduced to a low voltage until one minute has elapsed, when it is again raised to the high voltage for a few seconds and the contact broken. The ammeter usually shows that from 7 to 10 amperes pass through the criminal’s body. A second or even a third brief contact is sometimes made, partly as a precautionary measure, but rather the more completely to abolish reflexes in the dead body. Calculations have shown that by this method of execution from 7 to 10 h. p. of energy are liberated in the criminal’s body. The time consumed by the strapping-in process is usually about 45 seconds, and the first contact is made about 70 seconds after the criminal has entered the death-chamber.

When properly performed the effect is painless and instantaneous death. The mechanism of life, circulation and respiration cease with the first contact. Consciousness is blotted out instantly, and the prolonged application of the current ensures permanent derangement of the vital functions beyond recovery. Occasionally the drying of the sponges through undue generation of heat causes desquamation or superficial blistering of the skin at the site of the electrodes. Post-mortem discoloration, or post-mortem lividity, often appears during the first contact. The pupils of the eyes dilate instantly and remain dilated after death.

The post-mortem examination of “electrocuted” criminals reveals a number of interesting phenomena. The temperature of the body rises promptly after death to a very high point. At the site of the leg electrode a temperature of over 128° F. was registered within fifteen minutes in many cases. After the removal of the brain the temperature recorded in the spinal canal was often over 120° F. The development of this high temperature is to be regarded as resulting from the active metabolism of tissues not (somatically) dead within a body where all vital mechanisms have been abolished, there being no circulation to carry off the generated heat. The heart, at first flaccid when exposed soon after death, gradually contracts and assumes a tetanized condition; it empties itself of all blood and takes the form of a heart in systole. The lungs are usually devoid of blood and weigh only 7 or 8 ounces (avoird.) each. The blood is profoundly altered biochemically; it is of a very dark colour and it rarely coagulates.

(E. A. S.*)


ELECTROKINETICS, that part of electrical science which is concerned with the properties of electric currents.

Classification of Electric Currents.—Electric currents are classified into (a) conduction currents, (b) convection currents, (c) displacement or dielectric currents. In the case of conduction currents electricity flows or moves through a stationary material body called the conductor. In convection currents electricity is carried from place to place with and on moving material bodies or particles. In dielectric currents there is no continued movement of electricity, but merely a limited displacement through or in the mass of an insulator or dielectric. The path in which an electric current exists is called an electric circuit, and may consist wholly of a conducting body, or partly of a conductor and insulator or dielectric, or wholly of a dielectric. In cases in which the three classes of currents are present together the true current is the sum of each separately. In the case of conduction currents the circuit consists of a conductor immersed in a non-conductor, and may take the form of a thin wire or cylinder, a sheet, surface or solid. Electric conduction currents may take place in space of one, two or three dimensions, but for the most part the circuits we have to consider consist of thin cylindrical wires or tubes of conducting material surrounded with an insulator; hence the case which generally presents itself is that of electric flow in space of one dimension. Self-closed electric currents taking place in a sheet of conductor are called “eddy currents.”

Although in ordinary language the current is said to flow in the conductor, yet according to modern views the real pathway of the energy transmitted is the surrounding dielectric, and the so-called conductor or wire merely guides the transmission of energy in a certain direction. The presence of an electric current is recognized by three qualities or powers: (1) by the production of a magnetic field, (2) in the case of conduction currents, by the production of heat in the conductor, and (3) if the conductor is an electrolyte and the current unidirectional, by the occurrence of chemical decomposition in it. An electric current may also be regarded as the result of a movement of electricity across each section of the circuit, and is then measured by the quantity conveyed per unit of time. Hence if dq is the quantity of electricity which flows across any section of the conductor in the element of time dt, the current i = dq/dt.

Electric currents may be also classified as constant or variable and as unidirectional or “direct,” that is flowing always in the same direction, or “alternating,” that is reversing their direction at regular intervals. In the last case the variation of current may follow any particular law. It is called a “periodic current” if the cycle of current values is repeated during a certain time called the periodic time, during which the current reaches a certain maximum value, first in one direction and then in the opposite, and in the intervals between has a zero value at certain instants. The frequency of the periodic current is the number of periods or cycles in one second, and alternating currents are described as low frequency or high frequency, in the latter case having some thousands of periods per second. A periodic current may be represented either by a wave diagram, or by a polar diagram.[1] In the first case we take a straight line to represent the uniform flow of time, and at small equidistant intervals set up perpendiculars above or below the time axis, representing to scale the current at that instant in one direction or the other; the extremities of these ordinates then define a wavy curve which is called the wave form of the current (fig. 1). It is obvious that this curve can only be a single valued curve. In one particular and important case the form of the current curve is a simple harmonic curve or simple sine curve. If T represents the periodic time in which the cycle of current values takes place, whilst n is the frequency or number of periods per second and p stands for 2πn, and i is the value of the current at any instant t, and I its maximum value, then in this case we have i = I sin pt. Such a current is called a “sine current” or simple periodic current.