In general the dielectric constant is reduced with decrease of temperature towards a certain limiting value it would attain at the absolute zero. This variation, however, is not always linear. In some cases there is a very sudden drop at or below a certain temperature to a much lower value, and above and below the point the temperature variation is small. There is also a large difference in most cases between the value for a steadily applied electric force and a rapidly reversed or intermittent force—in the last case a decrease with increase of frequency. Maxwell (Elec. and Magn. vol. ii. § 788) showed that the square root of the dielectric constant should be the same number as the refractive index for waves of the same frequency (see [Electric Waves]). There are very few substances, however, for which the optical refractive index has the same value as K for steady or slowly varying electric force, on account of the great variation of the value of K with frequency.

There is a close analogy between the variation of dielectric constant of an insulator with electric force frequency and that of the rigidity or stiffness of an elastic body with the frequency of applied mechanical stress. Thus pitch is a soft and yielding body under steady stress, but a bar of pitch if struck gives a musical note, which shows that it vibrates and is therefore stiff or elastic for high frequency stress.

Residual Charges in Dielectrics.—In close connexion with this lies the phenomenon of residual charge in dielectrics.[14] If a glass Leyden jar is charged and then discharged and allowed to stand awhile, a second discharge can be obtained from it, and in like manner a third, and so on. The reappearance of the residual charge is promoted by tapping the glass. It has been shown that this behaviour of dielectrics can be imitated by a mechanical model consisting of a series of perforated pistons placed in a tube of oil with spiral springs between each piston.[15] If the pistons are depressed and then released, and then the upper piston fixed awhile, a second discharge can be obtained from it, and the mechanical stress-strain diagram of the model is closely similar to the discharge curve of a dielectric. R.H.A. Kohlrausch called attention to the close analogy between residual charge and the elastic recovery of strained bodies such as twisted wire or glass threads. If a charged condenser is suddenly discharged and then insulated, the reappearance of a potential difference between its coatings is analogous to the reappearance of a torque in the case of a glass fibre which has been twisted, released suddenly, and then gripped again at the ends.

For further information on the qualities of dielectrics the reader is referred to the following sources:—J. Hopkinson, “On the Residual Charge of the Leyden Jar,” Phil. Trans., 1876, 166 [ii.], p. 489, where it is shown that tapping the glass of a Leyden jar permits the reappearance of the residual charge; “On the Residual Charge of the Leyden Jar,” ib. 167 [ii.], p. 599, containing many valuable observations on the residual charge of Leyden jars; W.E. Ayrton and J. Perry, “A Preliminary Account of the Reduction of Observations on Strained Material, Leyden Jars and Voltameters,” Proc. Roy. Soc., 1880, 30, p. 411, showing experiments on residual charge of condensers and a comparison between the behaviour of dielectrics and glass fibres under torsion. In connexion with this paper the reader may also be referred to one by L. Boltzmann, “Zur Theorie der elastischen Nachwirkung,” Wien. Acad. Sitz.-Ber., 1874, 70.

Distribution of Electricity on Conductors.—We now proceed to consider in more detail the laws which govern the distribution of electricity at rest upon conductors. It has been shown above that the potential due to a charge of q units placed on a very small sphere, commonly called a point-charge, at any distance x is q/x. The mathematical importance of this function called the potential is that it is a scalar quantity, and the potential at any point due to any number of point charges q1, q2, q3, &c., distributed in any manner, is the sum of them separately, or

q1/x1 + q2/x2 + q3/x3 + &c. = Σ (q/x) = V

(17),

where x1, x2, x3, &c., are the distances of the respective point charges from the point in question at which the total potential is required. The resultant electric force E at that point is then obtained by differentiating V, since E = −dV / dx, and E is in the direction in which V diminishes fastest. In any case, therefore, in which we can sum up the elementary potentials at any point we can calculate the resultant electric force at the same point.

We may describe, through all the points in an electric field which have the same potential, surfaces called equipotential surfaces, and these will be everywhere perpendicular or orthogonal to the lines of electric force. Let us assume the field divided up into tubes of electric force as already explained, and these cut normally by equipotential surfaces. We can then establish some important properties of these tubes and surfaces. At each point in the field the electric force can have but one resultant value. Hence the equipotential surfaces cannot cut each other. Let us suppose any other surface described in the electric field so as to cut the closely compacted tubes. At each point on this surface the resultant force has a certain value, and a certain direction inclined at an angle θ to the normal to the selected surface at that point. Let dS be an element of the surface. Then the quantity E cos θdS is the product of the normal component of the force and an element of the surface, and if this is summed up all over the surface we have the total electric flux or induction through the surface, or the surface integral of the normal force mathematically expressed by ∫E cos θdS, provided that the dielectric constant of the medium is unity.