For a long time the final result deduced by Joule by these varied and careful investigations was accepted as the standard value of the mechanical equivalent of heat. Recent determinations by H.A. Rowland and others, necessitated by modern requirements, have shown that it is in error, but by less than 1%. The writings of Joule, which thus occupy the place of honour in the practical establishment of the conservation of energy, have been collected into two volumes published by the Physical Society of London. On the theoretical side the greatest stimulus came from the publication in 1847, without knowledge of Mayer or Joule, of Helmholtz’s great memoir, Über die Erhaltung der Kraft, followed immediately (1848-1852) by the establishment of the science of thermodynamics (q.v.), mainly by R. Clausius and Lord Kelvin on the basis of “Carnot’s principle” (1824), modified in expression so as to be consistent with the conservation of energy (see [Energetics]).
Though we can convert the whole of the energy possessed by any mechanical system into heat, it is not in our power to perform the inverse operation, and to utilize the whole of the heat in doing mechanical work. Thus we see that different forms of energy are not equally valuable for conversion into work. The ratio of the portion of the energy of a system which can under given conditions be converted into mechanical work to the whole amount of energy operated upon may be called the “availability” of the energy. If a system be removed from all communication with anything outside of itself, the whole amount of energy possessed by it will remain constant, but will of its own accord tend to undergo such transformations as will diminish its availability. This general law, known as the principle of the “dissipation of energy,” was first adequately pointed out by Lord Kelvin in 1852; and was applied by him to some of the principal problems of cosmical physics. Though controlling all phenomena of which we have any experience, the principle of the dissipation of energy rests on a very different foundation from that of the conservation of energy; for while we may conceive of no means of circumventing the latter principle, it seems that the actions of intelligent beings are subject to the former only in consequence of the rudeness of the machinery which they have at their disposal for controlling the behaviour of those ultimate portions of matter, in virtue of the motions or positions of which the energy with which they have to deal exists. If we have a weight capable of falling through a certain distance, we can employ the mutual forces of the system consisting of the earth and weight to do an amount of useful work which is less than the full amount of potential energy possessed by the system only in consequence of the friction of the constraints, so that the limit of availability in this case is determined only by the friction which is unavoidable. Here we have to deal with a transformation with which we can grapple, and which can be controlled for our purposes. If, on the other hand, we have to deal with a system of molecules of whose motions in the aggregate we become conscious only by indirect means, while we know absolutely nothing either of the motions or positions of any individual molecule, it is obvious that we cannot grasp single molecules and control their movements so as to derive the full amount of work from the system. All we can do in such cases is to place the system under certain conditions of transformation, and be content with the amount of work which it is, as it were, willing to render up under those conditions. Thus the principle of Carnot involves the conclusion that a greater proportion of the heat possessed by a body at a high temperature can be converted into work than in the case of an equal quantity of heat possessed by a body at a low temperature, so that the availability of heat increases with the temperature.
Clerk Maxwell supposed two compartments, A and B, to be filled with gas at the same temperature, and to be separated by an ideal, infinitely thin partition containing a number of exceedingly small trap-doors, each of which could be opened or closed without any expenditure of energy. An intelligent creature, or “demon,” possessed of unlimited powers of vision, is placed in charge of each door, with instructions to open the door whenever a particle in A comes towards it with more than a certain velocity V, and to keep it closed against all particles in A moving with less than this velocity, but, on the other hand, to open the door whenever a particle in B approaches it with less than a certain velocity v, which is not greater than V, and to keep it closed against all particles in B moving with a greater velocity than this. By continuing this process every unit of mass which enters B will carry with it more energy than each unit which leaves B, and hence the temperature of the gas in B will be raised and that of the gas in A lowered, while no heat is lost and no energy expended; so that by the application of intelligence alone a portion of gas of uniform pressure and temperature may be sifted into two parts, in which both the temperature and the pressure are different, and from which, therefore, work can be obtained at the expense of heat. This shows that the principle of the dissipation of energy has control over the actions of those agents only whose faculties are too gross to enable them to grapple individually with the minute portions of matter which are the seat of energy.
In 1875 Lord Rayleigh published an investigation on “the work which may be gained during the mixing of gases.” In the preface he states the position that “whenever, then, two gases are allowed to mix without the performance of work, there is dissipation of energy, and an opportunity of doing work at the expense of low temperature heat has been for ever lost.” He shows that the amount of work obtainable is equal to that which can be done by the first gas in expanding into the space occupied by the second (supposed vacuous) together with that done by the second in expanding into the space occupied by the first. In the experiment imagined by Lord Rayleigh a porous diaphragm takes the place of the partition and trap-doors imagined by Clerk Maxwell, and the molecules sort themselves automatically on account of the difference in their average velocities for the two gases. When the pressure on one side of the diaphragm thus becomes greater than that on the other, work may be done at the expense of heat in pushing the diaphragm, and the operation carried on with continual gain of work until the gases are uniformly diffused. There is this difference, however, between this experiment and the operation imagined by Maxwell, that when the gases have diffused the experiment cannot be repeated; and it is no more contrary to the dissipation of energy than is the fact that work may be derived at the expense of heat when a gas expands into a vacuum, for the working substance is not finally restored to its original condition; while Maxwell’s “demons” may operate without limit.
In such experiments the molecular energy of a gas is converted into work only in virtue of the molecules being separated into classes in which their velocities are different, and these classes then allowed to act upon one another through the intervention of a suitable heat-engine. This sorting can occur spontaneously to a limited extent; while if we could carry it out as far as we pleased we might transform the whole of the heat of a body into work. The theoretical availability of heat is limited only by our power of bringing those particles whose motions constitute heat in bodies to rest relatively to one another; and we have precisely similar practical limits to the availability of the energy due to the motion of visible and tangible bodies, though theoretically we can then trace all the stages.
If a battery of electromotive force E maintain a current C in a conductor, and no other electromotive force exist in the circuit, the whole of the work done will be converted into heat, and the amount of work done per second will be EC. If R denote the resistance of the whole circuit, E = CR, and the heat generated per second is C²R. If the current drive an electromagnetic engine, the reaction of the engine will produce an electromotive force opposing the current. Suppose the current to be thus reduced to C′. Then the work done by the battery per second will be EC′ or CC′R, while the heat generated per second will be C’²R, so that we have the difference (C - C′)C′R for the energy consumed in driving the engine. The ratio of this to the whole work done by the battery is (C - C′)/C, so that the efficiency is increased by diminishing C′. If we could drive the engine so fast as to reduce C′ to zero, the whole of the energy of the battery would be available, no heat being produced in the wires, but the horse-power of the engine would be indefinitely small. The reason why the whole of the energy of the current is not available is that heat must always be generated in a wire in which a finite current is flowing, so that, in the case of a battery in which the whole of the energy of chemical affinity is employed in producing a current, the availability of the energy is limited only on account of the resistance of the conductors, and may be increased by diminishing this resistance. The availability of the energy of electrical separation in a charged Leyden jar is also limited only by the resistance of conductors, in virtue of which an amount of heat is necessarily produced, which is greater the less the time occupied in discharging the jar. The availability of the energy of magnetization is limited by the coercive force of the magnetized material, in virtue of which any change in the intensity of magnetization is accompanied by the production of heat.
In all cases there is a general tendency for other forms of energy to be transformed into heat on account of the friction of rough surfaces, the resistance of conductors, or similar causes, and thus to lose availability. In some cases, as when heat is converted into the kinetic energy of moving machinery or the potential energy of raised weights, there is an ascent of energy from the less available form of heat to the more available form of mechanical energy, but in all cases this is accompanied by the transfer of other heat from a body at a high temperature to one at a lower temperature, thus losing availability to an extent that more than compensates for the rise.
It is practically important to consider the rate at which energy may be transformed into useful work, or the horse-power of the agent. It generally happens that to obtain the greatest possible amount of work from a given supply of energy, and to obtain it at the greatest rate, are conflicting interests. We have seen that the efficiency of an electromagnetic engine is greatest when the current is indefinitely small, and then the rate at which it works is also indefinitely small. M.H. von Jacobi showed that for a given electromotive force in the battery the horse-power is greatest when the current is reduced to one-half of what it would be if the engine were at rest. A similar condition obtains in the steam-engine, in which a great rate of working necessitates the dissipation of a large amount of energy.
(W. G.; J. L.*)