When these elementary books have been digested, the advanced student may proceed to study the following: J. Clerk Maxwell, A Treatise on Electricity and Magnetism (1st ed., Oxford, 1873; 2nd ed. by W.D. Niven, 1881; 3rd ed. by J.J. Thomson, 1892); Joubert and Mascart, Electricity and Magnetism, English translation by E. Atkinson (London, 1883); Watson and Burbury, The Mathematical Theory of Electricity and Magnetism (Oxford, 1885); A. Gray, A Treatise on Magnetism and Electricity (London, 1898). In the collected Scientific Papers of Lord Kelvin (3 vols., Cambridge, 1882), of James Clerk Maxwell (2 vols., Cambridge, 1890), and of Lord Rayleigh (4 vols., Cambridge, 1903), the advanced student will find the means for studying the historical development of electrical knowledge as it has been evolved from the minds of some of the master workers of the 19th century.

(J. A. F.)


[1] See Maxwell, Elementary Treatise on Electricity (Oxford, 1881), p. 47.

[2] See Maxwell, Treatise on Electricity and Magnetism (3rd ed., Oxford, 1892), vol. i. p. 80.

[3] Maxwell, Ibid. vol. i. § 74a; also Electrical Researches of the Hon. Henry Cavendish, edited by J. Clerk Maxwell (Cambridge, 1879), p. 104.

[4] Laplace (Mec. Cel. vol. i. ch. ii.) gave the first direct demonstration that no function of the distance except the inverse square can satisfy the condition that a uniform spherical shell exerts no force on a particle within it.

[5] The solution of the problem of determining the distribution on an ellipsoid of a fluid the particles of which repel each other with a force inversely as the nth power of the distance was first given by George Green (see Ferrer’s edition of Green’s Collected Papers, p. 119, 1871).

[6] See Thomson and Tait, Treatise on Natural Philosophy, § 519.

[7] See article “Electricity,” Encyclopaedia Britannica (9th edition), vol. viii. p. 30. The reader is also referred to an article by Lord Kelvin (Reprint of Papers on Electrostatics and Magnetism, p. 178), entitled “Determination of the Distribution of Electricity on a Circular Segment of a Plane, or Spherical Conducting Surface under any given Influence,” where another equivalent expression is given for the capacity of an ellipsoid.