ELEMENT (Lat. elementum), an ultimate component of anything, hence a fundamental principle. Elementum was used in Latin to translate the Greek στοιχεῖον (that which stands in a στοῖχος, or row), and is a word of obscure origin and etymology. The root of Lat. alere, to nourish, has been suggested, thus making it a doublet of alimentum, that which supports life; another explanation is that the word represents LMN., the first three letters of the second part of the alphabet, a parallel use to that of ABC. Apart from its application in chemistry, which is treated below, the word is used of the rudiments or principia of any science or subject, as in Euclid’s Elements of Geometry, or in the “beggarly elements” (τὰπτωχὰ στοιχεῖα, of St Paul in Gal. iv. 9); in mathematics, of a fundamental concept involved in an investigation, as the “elements” of a determinant; and in electricity, of a galvanic (or voltaic) “element” in an electric cell (see [Battery]: Electric). In astronomy, “element” is used of any one of the numerical or geometrical data by which the course of a varying phenomenon is computed; it is applied especially to orbital motion and eclipses. The “elements of an orbit” are the six data by which the position of a moving body in its orbit at any time may be determined. The “elements of an eclipse” express and determine the motion of the centre of the shadow-axis, and are the data necessary to compute the phenomena of an eclipse during its whole course, as seen at any place. In architecture the term “element” is applied to the outline of the design of a Decorated window, on which the centres for the tracery are found. These centres will all be found to fall on points which, in some way or other, will be equimultiples of parts of the openings.

Chemical Elements.

Like all other scientific concepts, that of an element has changed its meaning many times in many ways during the development of science. Owing to their very small amount of real chemical knowledge, the generalizations Ancient ideas. of the ancients were necessarily rather superficial, and could not stand in the face of the increasing development of practical chemistry. Nevertheless we find the concept of an element as “a substance from which all bodies are made or derived” held at the very beginning of occidental philosophy. Thales regarded “water” as the element of all things; his followers accepted his idea of a primordial substance as the basis of all bodies, but they endeavoured to determine some other general element or elements, like “fire” or “spirit,” or “love” and “hatred,” or “fire,” “water,” “air” and “earth.” We find in this development an exact parallelism to the manner in which scientific ideas generally arise, develop and change. They are created to point out the common part in a variety of observed phenomena, in order to get some leading light in the chaos of events. At first almost any idea will do, if only it promises some comprehensive arrangement of the facts; afterwards, the inconsistencies of the first trial make themselves felt; the first idea is then changed to meet better the new requirements. For a shorter or longer time the facts and ideas may remain in accord, but the uninterrupted increase of empirical knowledge involves sooner or later new fundamental alterations of the general idea, and in this way there is a never-ceasing process of adaptation of the ideas to the facts. As facts are unchangeable by themselves, the adaptation can be only one-sided; the ideas are compelled to change according to the facts. We must therefore educate ourselves to regard the ideas or theories as the changing part of science, and keep ourselves ready to accept even the most fundamental revision of current theories.

The first step in the development of the idea of elements was to recognize that a single principle would not prove sufficient to cover the manifoldness of facts. Empedocles therefore conceived a double or binary elementary principle; and Aristotle developed this idea a stage further, stating two sets of binary antagonistic principles, namely “dry-wet” and “hot-cold.” The Aristotelian or peripatetic elements, which played such a great rôle in the whole medieval philosophy, are the representatives of the several binary combinations of these fundamental properties, “fire” being hot and dry, “air” hot and wet, “water” cold and wet, “earth” cold and dry. According to the amount of these properties found in any body, these elements were regarded as having taken part in forming this body. Concerning the reason why only these properties were regarded as fundamental, we know nothing. They seem to be taken at random rather than carefully selected; they relate only to the sense of touch, and not to vision or any other sense, possibly because deceptions in the sense of touch were regarded as non-existent, while the other senses were apparently not so trustworthy. At any rate, the Aristotelian elements soon proved to be rather inadequate to meet the requirements of the increasing chemical knowledge; other properties had therefore to be selected to represent the general behaviour of chemical substances, and in this case we find them already much more “chemical” in the modern sense.

Among the various substances recognized by the chemists, certain classes or groups readily distinguished themselves. First the metals, by their lustre, their heaviness, and a number of other common properties. According to Elements of the alchemists. the general principle of selecting a single substance as a representative of the group, the metallic properties were represented by “mercury.” The theoreticians of the middle ages were rather careful to point out that common mercury (the liquid metal of to-day) was not at all to be identified with “philosophical” mercury, the last being simply the principle of metallic behaviour. In the same way combustibility was represented by “sulphur,” solubility by “salt,” and occasionally the chemically indifferent or refractory character by “earth.” According to the subsistence and preponderance of these properties in different bodies, these were regarded as containing the corresponding elements; conversely, just as experience teaches the chemist every day that by proper treatment the properties of given bodies may be changed in the most various ways, the observed changes of properties were ascribed to the gain or loss of the corresponding elements. According to this theory, which accounted rather well for a large number of facts, there was no fundamental objection against trying to endow base metals with the properties of the precious ones; to make artificial gold was a task quite similar to the modern problem of, e.g. making artificial quinine. The realization that there is a certain natural law preventing such changes is of much later date. It is therefore quite unjust to consider the work of the alchemists, who tried to make artificial gold, as consummate nonsense. A priori there was no reason why a change from lead to gold should be less possible than a change from iron to rust; indeed there is no a priori reason against it now. But experience has taught us that lead and gold are chemical elements in the modern sense, and that there is a general experimental law that elements are not transformable one into another. So experience taught the alchemists irresistibly that in spite of the manifoldness of chemical changes it is not always possible to change any given substance into another; the possibilities are much more limited, and there is only a certain range of substances to be obtained from a given one. The impossibility of transforming lead or copper into noble metals proved to be only one case out of many, and it was recognized generally that there are certain chemical families whose members are related to one another by their mutual transformability, while it is impossible to bridge the boundaries separating these families.

The man who brought all these experiences and considerations into scientific form was Robert Boyle. He stated as a general principle, that only tangible and ponderable substances should be recognized as elements, an element being Work of Robert Boyle. a substance from which other substances may be made, but which cannot be separated into different substances. He showed that neither the peripatetic nor the alchemistic elements satisfied this definition. But he was more of a critical than of a synthetical turn of mind; although he established the correct principles, he hesitated to point out what substances, among those known at his time, were to be considered as elements. He only paved the way to the goal by laying the foundations of analytical chemistry, i.e. by teaching how to characterize and to distinguish different chemical individuals. Further, by adopting and developing the corpuscular hypothesis of the constitution of the ponderable substances, he foreshadowed, in a way, the law of the conservation of the elements, viz. that no element can be changed into another element; and he considered the compound substances to be made up from small particles or corpuscles of their elements, the latter retaining their essence in all combinations. This hypothesis accounts for the fact that only a limited number of other substances can be made from a given one—namely, only those which contain the elements present in the given substance. But it is characteristic of Boyle’s critical mind that he did not shut his eyes against a serious objection to his hypothesis. If the compound substance is made up of parts of the elements, one would expect that the properties of the compound substance would prove to be the sum of the properties of the elements. But this is not the case, and chemical compounds show properties which generally differ very considerably from those of the compounds. On the one hand, the corpuscular hypothesis of Boyle was developed into the atomic hypothesis of Dalton, which was considered at the beginning of the 19th century as the very best representation of chemical facts, while, on the other hand, the difficulty as to the properties of the compounds remained the same as Boyle found it, and has not yet been removed by an appropriate development of the atomic hypothesis. Thus Boyle considered, e.g. the metals as elements. However, it is interesting to note that he considered the mutual transformation of the metals as not altogether impossible, and he even tells of a case when gold was transformed into base metal. It is a common psychological fact that a reformer does not generally succeed in being wholly consistent in his reforming ideas; there remains invariably some point where he commits exactly the same fault which he set out to abolish. We shall find the same inconsistency also among other chemical reformers. Even earlier than Boyle, Joachim Jung (1587-1657) of Hamburg developed similar ideas. But as he did not distinguish himself, as Boyle did, by experimental work in science, his views exerted only a limited influence amongst his pupils.

In the times following Boyle’s work we find no remarkable outside development of the theory of elements, but a very important inside one. Analytical chemistry, or the art of distinguishing different chemical substances, was rapidly developing, Phlogiston theory. and the necessary foundation for such a theory was thus laid. We find the discussions about the true elements disappearing from the text-books, or removed to an insignificant corner, while the description of observed chemical changes of different ways of preparing the same substance, as identified by the same properties, and of the methods for recognizing and distinguishing the various substances, take their place. The similarity of certain groups of chemical changes, as, for example, combustion, and the inverse process, reduction, was observed, and thus led to an attempt to shape these most general facts into a common theory. In this way the theory of “phlogiston” was developed by G.E. Stahl, phlogiston being (according to the usual way of regarding general properties as being due to a principle or element) the “principle of combustibility,” similar to the “sulphur” of the alchemists. This again must be regarded as quite a legitimate step justified by the knowledge of the time. For experience taught that combustibility could be transferred by chemical action, e.g. from charcoal to litharge, the latter being changed thereby into combustible metallic lead; and according to Boyle’s principle, that only bodies should be recognized as chemical elements, phlogiston was considered as a body. From the fact that all leading chemists in the second half of the 18th century used the phlogiston theory and were not hindered by it in making their great discoveries, it is evident that a sufficient amount of truth and usefulness was embodied in this theory. It states indeed quite correctly the mutual relations between oxidation and reduction, as we now call these very general processes, and was erroneous only in regard to one question, which at that time had not aroused much interest, the question of the change of weight during chemical processes.

It was only after Isaac Newton’s discovery of universal gravitation that weight was considered as a property of paramount interest and importance, and that the question of the changes of weight in chemical reactions became Lavoisier’s reform. one worth asking. When in due time this question was raised, the fact became evident at once, that combustion means not loss but gain of weight. To be sure of this, it was necessary to know first the chemical and physical properties of gases, and it was just at the same time that this knowledge was developed by Priestley, Scheele and others. Lavoisier was the originator and expounder of the necessary reform. Oxygen was just discovered at that time, and Lavoisier gathered evidence from all sides that the theory of phlogiston had to be turned inside out to fit the new facts.

He realized that the sum total of the weights of all substances concerned within a chemical change is not altered by the change. This principle of the “conservation of weight” led at once to a simple and unmistakable definition of a chemical element. As the weight of a compound substance is the sum of the weights of its elements, the compound necessarily weighs more than any of its elements. An element is therefore a substance which, by being changed into another substance, invariably increases its weight, and never gives rise to substances of less weight. By the help of this criterion Lavoisier composed the first table of chemical elements similar to our modern ones. According to the knowledge of his time he regarded the alkalis as elements, although he remarked that they are rather similar to certain oxides, and therefore may possibly contain oxygen; the truth of this was proved at a later date by Humphry Davy. But the inconsistency of the reformer, already referred to, may be observed with Lavoisier. He included “heat and light” in his list of elements, although he knew that neither of them had weight, and that neither fitted his definition of an element; this atavistic survival was subsequently removed from the table of the elements by Berzelius in the beginning of the 19th century. In this way the question of what substances are to be regarded as chemical elements had been settled satisfactorily in a qualitative way, but it is interesting to realize that the last step in this development, the theory of Lavoisier, was based on quantitative considerations. Such considerations became of paramount interest at once, and led to the concept of the combining weights of the elements.