Physiology of Development

Physiology of Development [in German, Entwicklungsmechanik (W. Roux), Entwicklungsphysiologie (H. Driesch), physiologische Morphologie (J. Loeb)] is, in the broadest meaning of the word, the experimental science of morphogenesis, i.e. of the laws that govern morphological differentiation. In this sense it embraces the study of regeneration and variation, and would, as a whole, best be called rational morphology. Here we shall treat of the Physiology of Development in a narrower sense, as the study of the laws that govern the development of the adult organism from the egg, [Regeneration] and [Variation and Selection] forming the subjects of special articles.

After the work done by W. His, A. Goette and E.F.W. Pflüger, who gave a sort of general outline and orientation of the subject, the first to study developmental problems properly in a systematical way, and with full conviction of their great importance, was Wilhelm Roux. This observer, having found by a full analysis of the facts of “development” that the first special problem to be worked out was the question when and where the first differentiation appeared, got as his main result that, when one of the two first blastomeres (cleavage cells) of the frog’s egg was killed, the living one developed into a typical half-embryo, i.e. an embryo that was either the right or the left part of a whole one. From that Roux concluded that the first cleavage plane determined already the median plane of the adult; and that the basis of all differentiation was given by an unequal division of the nuclear substances during karyokinesis, a result that was also attained on a purely theoretical basis by A. Weismann. Hans Driesch repeated Roux’s fundamental experiment with a different method on the sea-urchin’s egg, with a result that was absolutely contrary to that of Roux: the isolated blastomere cleaved like half the egg, but it resulted in a whole blastula and a whole embryo, which differed from a normal one only in its small size. Driesch’s result was obtained in somewhat the same manner by E.B. Wilson with the egg of Amphioxus, by Zoja with the egg of Medusae, &c. It thus became very probable that an inequality of nuclear division could not be the basis of differentiation. The following experiments were still more fatal to the theories of Roux and of Weismann. Driesch found that even when the first eight or sixteen cells of the cleaving egg of the sea-urchin were brought into quite abnormal positions with regard to one another, still a quite normal embryo was developed; Driesch and T.H. Morgan discovered jointly that in the Ctenophore egg one isolated blastomere developed into a half-embryo, but that the same was the case if a portion of protoplasm was cut off from the fertilized egg not yet in cleavage; last, but not of least importance, in the case of the frog’s egg which had been Roux’s actual subject of experiment, conditions were discovered by O. Schultze and O. Hertwig under which one of the two first blastomeres of this egg developed into a whole embryo of half size. This result was made still more decisive by Morgan, who showed that it was quite in the power of the experimenter to get either a half-embryo or a whole one of half size, the latter dependent only upon giving to the blastomere the opportunity for a rearrangement of its matter by turning it over.

Thus we may say that the general result of the introductory series of experiments in the physiology of development is the following:—In many forms, e.g. Echinoderms, Amphioxus, Ascidians, Fishes and Medusae, the potentiality (prospective Potenz—Driesch) of all the blastomeres of the segmented egg is the same, i.e. each of them may play any or every part in the future development; the prospective value (prosp. Bedeutung—D.) of each blastomere depends upon, or is a function of, its position in the whole of the segmented egg; we can term the “whole” of the egg after cleavage an “aequipotential system” (Driesch). But though aequipotential, the whole of the segmented egg is nevertheless not devoid of orientation or direction; the general law of causality compels us to assume a general orientation of the smallest parts of the egg, even in cases where we are not able to see it. It has been experimentally proved that external stimuli (light, heat, pressure, &c.) are not responsible for the first differentiation of organs in the embryo; thus, should the segmented egg be absolutely equal in itself, it would be incomprehensible that the first organs should be formed at one special point of it and not at another. Besides this general argument, we see a sort of orientation in the typical forms of the polar or bilateral cleavage stages.

Differentiation, therefore, depends on a primary, i.e. innate, orientation of the egg’s plasma in those forms, the segmented eggs of which represent aequipotential systems; this orientation is capable of a sort of regulation or restoration after disturbances of any sort; in the egg of the Ctenophora such a regulation is not possible, and in the frog’s egg it is facultative, i.e. possible under certain conditions, but impossible under others. Should this interpretation be right, the difference between the eggs of different animals would not be so great as it seemed at first: differences with regard to the potentialities of the blastomeres would only be differences with regard to the capability of regulation or restoration of the egg’s protoplasm.

The foundation of physiological embryology being laid, we now can shortly deal with the whole series of special problems offered to us by a general analysis of that science, but at present worked out only to a very small extent.

We may ask the following questions:—What are the general conditions of development? On what general factors does it depend? How do the different organs of the partly developed embryo stand with regard to their future fate? What are the stimuli (Reize) effecting differentiation? What is to be said about the specific character of the different formative effects? And as the most important question of all: Are all the problems offered to us in the physiology of development to be solved with the aid of the laws known hitherto in science, or do we want specifically new “vitalistic” factors?

Energy in different forms is required for development, and is provided by the surrounding medium. Light, though of no influence on the cleavage (Driesch), has a great effect on later stages of development, and is also necessary Conditions of differentiation. for the formation of polyps in Eudendrium (J. Loeb). That a certain temperature is necessary for ontogeny has long been known; this was carefully studied by O. Hertwig, as was also the influence of heat on the rate of development. Oxygen is also wanted, either from a certain stage of development or from the very beginning of it, though very nearly related forms differ in this respect (Loeb). The great influence of osmotic pressure on growth was studied by J. Loeb, C. Herbst and C.H. Davenport. In all these cases energy may be necessary for development in general, or a specific form of energy may be necessary for the formation of a specific organ; it is clear that, especially in the latter case, energy is shown to be a proper factor for morphogenesis. Besides energy, a certain chemical condition of the medium, whether offered by the water in which the egg lives or (especially in later stages) by the food, is of great importance for normal ontogeny; the only careful study in this respect was carried out by Herbst for the development of the egg of Echinids. This investigator has shown that all salts of the sea water are of great importance for development, and most of them specifically and typically; for instance, calcium is absolutely necessary for holding together the embryonic cells, and without calcium all cells will fall apart, though they do not die, but live to develop further.

What we have dealt with may be called external factors of development; as to their complement, the internal factors, it is clear that every elementary factor of general physiology may be regarded as one of them. Chemical metamorphosis plays, of course, a great part in differentiation, especially in the form of secretions; but very little has been carefully studied in this respect. Movement of living matter, whether of cells or of intracellular substance, is another important factor (O. Bütschli, F. Dreyer, L. Rhumbler.) Cell-division is another, its differences in direction, rate and quantity being of great importance for differentiation. We know very little about it; a so-called law of O. Hertwig, that a cell would divide at right angles to its longest diameter, though experimentally stated in some cases, does not hold for all, and the only thing we can say is, that the unknown primary organization of the egg is here responsible. (Compare the papers on “cell-lineage” of E.B. Wilson, F.R. Lillie, H.S. Jennings, O. Zurstrassen and others.) Of the inner factors of ontogeny there is another category that may be called physical, that already spoken of being physiological. The most important of these is the capillarity of the cell surfaces. Berthold was the first to call attention to its role in the arrangement of cell composites, and afterwards the matter was more carefully studied by Dreyer, Driesch, and especially W. Roux, with the result that the arrangement of cells follows the principle of surfaces minimae areae (Plateau) as much as is reconcilable with the conditions of the system.

It has already been shown that in many cases the embryo after cleavage, i.e. the blastula, is an “aequipotential system.” It was shown that in the egg of Echinids there existed such an absolute lack of determination of the cleavage Potentialities of embryonic cells. cells that (a) the cells may be put in quite abnormal positions with reference to one another without disturbing development; (b) a quarter blastomere gives a quite normal little pluteus, even a sixteenth yields a gastrula; (c) two eggs may fuse in the early blastula stage, giving one single normal embryo of double size. Our next question concerns the distribution of potentiality, when the embryo is developed further than the blastula stage. In this case it has been shown that the potentialities of the different embryonic organs are different: that, for instance, in Echinoderms or Amphibians the ectoderm, when isolated, is not able to form endoderm, and so on (Driesch, D. Barfurth); but it has been shown at the same time that the ectoderm in itself, the intestine in itself of Echinoderms (Driesch), the medullary plate in itself of Triton (H. Spemann), is as aequipotential as was the blastula: that any part whatever of these organs may be taken away without disturbing the development of the rest into a normal and proportional embryonic part, except for its smaller size.