The spread of roller milling on the continent of Europe was undoubtedly accelerated by the invention of porcelain rolls, by Friedrich Wegmann, a Swiss miller, which were brought into general use in the seventh decade of the Porcelain rolls. 19th century, and are still widely employed. They are admirably fitted for the reduction of semolina, middlings and dunst into flour; and for reducing pure middlings, that is, middlings containing no bran or wheat husk, there is perhaps nothing that quite equals them. They were introduced into Great Britain in 1877, or thereabouts, and were used for several years, but ultimately they almost disappeared from British mills. This was partly due to the fact that as made at that date they were rather difficult to work, as it was not easy to keep the rolls perfectly parallel. Another drawback was their inadaptability to over-heavy feeds, to which the British, and perhaps still more the American, miller is frequently obliged to resort. However, since the beginning of the 20th century some of the most advanced flour mills in England have again taken to using porcelain rolls for some part of their reduction process.
The birth of roller milling in Great Britain may be said to date from 1872, when Oscar Oexle, a German milling engineer, erected a set of roller mills in the Tradeston Mills, in Glasgow. This was long before the introduction of Roller milling in England. automatic roller mills. But the foundations of the millstone system were not seriously disturbed till 1877, when a party of leading British and Irish millers visited Vienna and Budapest with the object of studying roller milling in its native home. In 1878 J.H. Carter installed in the mill of J. Boland, of Dublin, what was probably the first complete automatic roller plant erected in the United Kingdom, and in 1881 a milling exhibition held at the Royal Agricultural Hall, London, showed the automatic roller system in complete operation. From that time the roller system made great progress. By 1885 many of the leading British millers had installed full roller plants, and in the succeeding ten years small roller plants were installed in many country mills. For a time there was a transition stage in which there was in operation a number of so-called “combined” plants, that is to say, mills in which the wheat was broken on millstones or disk mills, while the middlings were reduced by smooth rolls; but these gradually dropped out of being.
Well-found British flour mills at the present time are probably the best fitted in the world, and as a whole have nothing to fear from comparison with their American competitors. It is true that American millers were rather quicker to copy Hungarian milling methods so far as gradual reduction was concerned. But from about 1880 the British miller was quite awake to his position and was straining every nerve to provide himself with a plant capable of dealing with every kind of wheat. It has often been said that he commands the wheat of the whole world. This is true in a sense, but it is not true that he can always command the exact kind of wheat he requires at the price required to meet foreign competition. Therein he is at a disadvantage. But engineers have done their best to meet this weak point, and by their assistance he is able to compete under almost all conditions with the millers of the whole world.
Processes of Milling.—Fully to appreciate the various processes of modern milling, it must be remembered not only that the wheat as delivered at the mill is dusty and mixed with sand and even more objectionable refuse, but also that it contains many light grains and seeds of other plants. It is not therefore sufficient for the miller to be able to reduce the grain to flour on the most approved principles; he must also have at command the means of freeing it from foreign substances, and further of “conditioning” it, should it be damp or over dry and harsh. Again, his operations must be conducted with reference to the structure of the wheat grain. The wheat berry is a fruit, not a seed, the actual seed being the germ or embryo, a kidney-shaped body which is found at the base of the berry and is connected with the plumule or root. The germ is tough in texture and is in roller milling easily separated from the rest of the berry, being flattened instead of crushed by the rolls and thus readily sifted from the stock. The germ contains a good deal of fatty matter, which, if allowed to remain, would not increase the keeping qualities of the flour. Botanists distinguish five skins on the berry—epidermis, epicarp, endicarp, episperm and embryous membrane—but for practical purposes the number of integuments may be taken as three. The inner skin is often as thick as the outer and second skins together, which are largely composed of woody fibre; it contains the cerealin or aleurone cells, but although these are made up of a certain proportion of proteids, on account of the discolouring and diastasic action of the cerealin in flour they are best eliminated. The endosperm, or floury kernel, coming next to the inner skin, consists of starch granules which are caught as it were in the minute meshes of a net. This network is the gluten, and it may be noted that these meshes are not of equal consistency throughout the berry, but are usually finer and more dense near the husk than in the interior of the kernel. This glutinous portion is of great importance to the baker because on its quantity and quality depends the “strength” or rising power of the flour, and the aim of modern roller milling is to retain it as completely as possible, a matter of some difficulty owing to its close adherence to the husk, especially in the richest wheats. Another organ of the wheat berry which has a most important bearing on the work of the miller is the placenta, which is in effect a cord connecting the berry with its stalk or straw. The placenta serves to filter the food which the plant sucks up from the ground; it passes up the crease of the berry, and is enfolded in the middle skin, being protected on the outer side by the first and having the third or inner skin on its other side. A good deal of the matters filtered by the placenta are mineral in their nature, and such portions as are not digested remain in the crease. This is the matter which millers call “crease dirt.” It is highly discolouring to flour, and must be carefully eliminated. The fuzzy end of the berry known as the beard also has a distinct function; its hairs are in reality tubes which serve to carry off superfluous moisture. They have, in common with the bran, no nutritive value. (See also [Wheat].)
In the old “flat” or “low” milling the object was to grind as perfectly as possible, at one operation, the central substance of the grain, constituting the flour, and to separate it from the embryo and outer skins constituting the bran. In “high” milling, on the other hand, the grinding is effected in a series of operations, the aim being to get as much semolina and middlings as possible from the wheat, and to make as little flour as possible during the earlier or “breaking” part of the process. It is impossible altogether to avoid the production of flour at this stage, but properly set and worked break-rolls will make as little as 15% of “break-flour,” which is of less value, being contaminated with crease dirt, and also because it is weak owing to the absence of the gluten cells which adhere more readily to the middlings. Whole wheaten flour, sometimes called Graham flour, consists of the entire grain ground up to a uniform mass.
Wheat cleaning has been well called the foundation of all good milling. In the screen house, as the wheat-cleaning department of the mill is termed, will be found an array of machinery almost equal in range and variety to that in the mill Dry cleaning. itself. The wheat, drawn by an elevator from the barge, or hoisted in sacks, is first treated by a machine known as a warehouse separator. This apparatus accomplishes its work by means of flat sieves, some of which will be of much coarser mesh than others, and of air currents, the adjustment of which is a more delicate task than might appear. The warehouse separator serves to free dirty wheat of such impurities as lumps of earth, stones, straws and sand, not to mention small seeds, also some maize, oats and barley. Great care has to be exercised in all operations of the screen house lest wheat should pass away with the screenings. Besides the warehouse separator, which is made in different types and sizes, grading and sorting cylinders, and what are known as cockle and barley cylinders, are much used in the screen house. These cylinders are provided with indents so shaped and of such size as to catch seeds which are smaller than wheat, and reject grains, as of barley or oats, which are longer than wheat. Sorting cylinders should be followed by machines known as scourers, the function of which is to free the wheat from adherent impurities. These machines are of different types, but all depend on percussive action. A vertical scourer consists of a number of steel or iron beaters attached to a vertical spindle which revolves inside a metallic woven or perforated casing, the whole being fitted with an effectual exhaust. Scourers with horizontal spindles are also in great favour. Not every wheat is suitable for scouring, but some wheats are so mingled with impurities that a severe action between the beaters and the perforated case is absolutely necessary. The most efficient scourer is that which frees the wheat from the greatest amount of impurity with a minimum of abrasion. The beaters should be adjustable to suit different kinds of wheat. Scourers are followed by brush machines which are similar to the last and are of three distinct types: solid, divided and cone brushes. In the solid variety the brush surface is continuous around the circumference of a revolving cylinder; in divided brushes there is often a set of beaters or bars covered with brush but leaving intermediate spaces; while the cone brush consists of beaters covered with fibre arranged like cones around a vertical spindle. The object of all these brushes, the cylinder containing them being fitted with an exhaust fan, is to polish the wheat and remove adhering impurities which the percussive action of the scourer may have failed to eliminate, also to remove the beard or fuzzy end and any loose portions of the outer husk. But the miller must be careful not to overdo the scouring action and unnecessarily abrade the berry, else he will have trouble with his flour, the triturated bran breaking under the rolls and producing powder which will discolour the break flour. To remove such metallic fragments as nails, pieces of wire, &c., magnets are used. These may either be of horseshoe shape, in which case they are usually set at the head of the wheat spouts, or they may consist of magnetized plates set at angles over which the wheat will slide. It is not a bad plan to place the magnets just before the first set of break-rolls, where they should ensure the arrest of steel and iron particles, which might otherwise get between the rolls and spoil the edges of their grooves, and also do damage to the sifting machines. Mention must also be made of the automatic scales which are used to check the milling value of the wheat. In principle these machines are all the same, though details of construction may vary. Each weigher is set for a given weight of grain. As soon as the receiving hopper has poured through a valve into the recipient or skip, which is hung at one end of a beam scale, a load of grain sufficient to overcome the weight hung at the other end of the beam, the inlet of grain is automatically cut off and the skip is discharged, automatically returning to take another charge. Each weighing is automatically recorded on a dial. In this way a record can be kept of the gross weight of the uncleaned wheat entering the warehouse and of the net weight of the cleaned wheat. The difference between the two weighings will, of course, represent the loss by cleaning. The percentage of flour obtained from a given wheat can be ascertained in the mill itself. In practice the second weigher is placed just before the first break.
The cleansing of wheat by washing only became a fine art at the close of the 19th century, though it was practised in the north of England some twenty years earlier. Briefly it may be said that certain wheats are washed to free them from extraneous Wet cleaning and conditioning. matters such as adherent earth and similar impurities which could not be removed by dry cleaning without undue abrasion. Such wheats are Indians, Persians and hard Russians, and these require not only washing but also conditioning, by which is meant mellowing, before going to the rolls. With another class of wheats, such as the softer Russians and Indians, spring Americans and Canadians, hard American winters, Californians and the harder River Plates, washing and conditioning by heat is also desirable, though care must be exercised not to let the moisture penetrate into the endosperm or floury portion of the kernel. In a third and distinct class fall soft wheats, such as many kinds of Plates, soft Russians and English wheat. It is generally admitted that while wheat of the first two divisions will benefit from the application of both moisture and heat, wheat of the third class must be washed with great circumspection. The object of washing machines is to agitate the wheat in water till the adherent foreign matters are washed off and any dirt balls broken up and drained off in the waste water. To this end some washers are fitted with Archimedean worm conveyors set either at an inclined angle or horizontally or vertically; or the washer may consist of a barrel revolving in a tank partly filled with water. Another function of washing machines is to separate stones of the same size which are found in several varieties of wheat. This separation is effected by utilizing a current of water as a balance strong enough to carry wheat but not strong enough to carry stones or bodies of greater specific gravity than wheat. This current may be led up an inclined worm or may flow horizontally over a revolving tray. The washer is followed by a whizzer, which is an apparatus intended to free the berry by purely mechanical means from superfluous moisture. The typical whizzer is a vertical column fed at the bottom and delivering at the top. The wet wheat ascends by centrifugal force in a spiral direction round the column to the top, and by the time it is discharged from the spout at the top it has thrown off from its outer skin almost all its moisture, the water escaping through the perforated cover of the machine. But there still remains a certain amount of water which has penetrated the integuments more or less deeply, and to condition the berry it is treated by a combination of hot and cold air. The wheat is passed between perforated metal plates and subjected to a draught first of hot and then of cold air. The perforated plates are usually built in the shape of a column, or leg as it is often called, and this is provided with two air chambers, an upper one serving as a reservoir for hot, and the lower for cold air. The air from both chambers is discharged by pressure through the descending layers of wheat, which should not be more than an inch thick; the air is drawn in by a steel-plate fan, which is often provided with a divided casing, one side being used for cold, and the other for hot air. Coupled with the hot air side is a heater consisting of a series of circulating steam-heated pipes. The temperature of the heated air can be regulated by the supply of steam to the heater. This process of washing and conditioning, one of the most important in a flour mill, is characteristically British; millers have to deal with wheats of the most varied nature, and one object of conditioning is to bring hard and harsh, soft and weak wheats as nearly as possible to a common standard of condition before being milled. Wheat is sometimes washed to toughen the bran, an end which can also be attained by damping it from a spraying pipe as it passes along an inclined worm. Another way of toughening bran is to pass wheat through a heated cylinder, while again another process known as steaming consists of injecting steam into wheat as it passes through a metal hopper. Here the object is to cleanse to some extent, and to warm and soften (by the condensation of moisture on the grain), but these processes are imperfect substitutes for a full washing and conditioning plant. Hard wheats will not be injured by a fairly long immersion in water, always provided the subsequent whizzing and drying are efficiently carried out. The second class of semi-hard wheats already mentioned must be run more quickly through the washer and freed from the water as rapidly as possible. Still more is this necessary with really soft wheats, such as soft River Plates and the softer English varieties. Here an immersion of only a few seconds is desirable, while the moisture left by the water must be immediately and energetically thrown off by the whizzer before the grain enters the drier. Treated thus, soft wheats may be improved by washing. It is claimed that hard wheats, like some varieties of Indians, are positively improved in flavour by conditioning, and this is probably true; certain it is that English country millers, in seasons when native wheat was scarce and dear, and Indian wheat was abundant and cheap, have found the latter, mellowed by conditioning, to be an excellent substitute.
Wheats which have been exposed to the action of water during harvest do not necessarily yield unsound flour; the matter is a question of the amount of moisture absorbed. But it must be remembered that it is not so much the water Effect of damp. itself which degrades the constituents of the wheat (starch and gluten) as the chemical changes which the dampness produces. Hence perhaps the best remedy which can be found for damp wheat is to dry it as soon as it has been harvested, either by kiln or steam drier at a heat not exceeding 120° F., until the moisture has been reduced to 10% of the whole grain. The flour made from wheat so treated may be weak, but will not usually be unsound. The practice of drying damp flour has also good results. Long before the roller milling period it was found that only flour which had been dried (in a kiln) could safely be taken on long sea voyages, especially when the vessel had to navigate warm latitudes. It may be noted that in the days of millstone milling it was far more difficult to produce good keeping flour. The wheat berry being broken up and triturated in one operation, the flour necessarily contained a large proportion of branny particles in which cerealin, an active diastasic constituent, was present in very sensible proportions. Again, the elimination of the germ by the roller process is favourable to the production of a sounder flour, because the germ contains a large amount of oleaginous matter and has a strong diastasic action on imperfectly matured starches. The tendency of flours containing germ to become rancid is well marked. During the South African War of 1899-1902 the British army supply department had a practical proof of the diastasic action of branny particles in flour. Soldiers’ bread is not usually of white colour, and the military authorities not unnaturally believed that comparatively low-grade flour, if sound, was eminently suitable for use in the field bakeries. But in the climate of South Africa flour of this description soon developed considerable acidity. Ultimately the supply department gave up buying any but the driest patent flours, and it is understood that the most suitable flour proved to be certain patents milled in Minneapolis, U.S.A., from hard spring wheat. Not only did they contain a minimum of branny and fibrous matters, but they were also the driest that could be found.
After being cleaned the wheat berry is split and broken up into increasingly fine pieces by fluted rolls or “breaks.” In the earlier years of roller milling it was usual to employ more breaks than is now the case. The first pair of break-rolls used Break-rolls. to be called the splitting rolls, because their function was supposed to be to split the berry longitudinally down its crease, so as to give the miller an opportunity of removing the dirt between the two lobes of the berry by means of a brush machine. The dirt was in many cases no more than the placenta already described, which shrivelling up took, like all vegetable fibre, a dark tint. The neat split along the crease was not, however, achieved in more than 10% of the berries so treated. Where such rolls are still in use they are really serving as a sort of adjunct to the wheat-cleaning system. Four or five breaks are now thought sufficient, but three breaks are not recommended, except in very short systems for small country mills. Rolls are now used up to 60 in. in length, though in one of the most approved systems they never exceed 40 in.; they are made of chilled iron, and for the breaking of wheat are provided with grooving cut at a slight twist, the spiral averaging ¼ in. to the foot length, though for the last set of break-rolls, which clean up the bran, the spiral is sometimes increased to ½ in. per foot. The grooves should have sharp edges because they do better work than when blunt, giving larger semolina and middlings, with bran adherent in big flakes; small middlings, that is, little pieces of the endosperm torn away by blunt grooves, and comminuted bran, make the production of good class flour almost impossible; cut bran, moreover, brings less money. The break-rolls should never work by pressure, but nip the material fed between them at a given point; to cut or shear, not to flatten and crush, is their function. Rolls may be set either horizontally or vertically; an oblique setting has also come into favour. The feed is of the utmost importance to the correct working of a roller mill. The material should be fed in an even stream, not too thick, and leaving no part of the roll uncovered. The two rolls of each pair are run at unequal speeds, 2½ to 1 being the usual ratio on the three first breaks, while the last break is often speeded at 3 to 1 or 3½ to 1; in one of the oblique mills the difference is obtained by making the diameter of one roll 13 and of the other 10 in. and running them at equal speed. For break-rolls up to 36 in. in length 9 in. is the usual diameter; for longer rolls 10 in. is the standard. To do good work rolls must run in perfect parallelism; otherwise some parts of the material will pass untouched, while others will be treated too severely.
The products of the break-rolls are treated by what are known as scalpers, which are simply machines for sorting out these products for further treatment. Scalpers may either be revolving reels or flat sieves. The sieve is the favourite form of Scalpers. scalper on account of its gentle action. Scalping requires a separating and sifting, not a scouring action. The break products are usually separated on a sieve covered with wire or perforated zinc plates. Generally speaking, two sieves are in one frame and are run at a slight incline. The throughs of the top sieve fall on the sieve below, while the rejections or overtails of the first sieve are fed to the next break. The “throughs,” or what has passed this sieve, are graded by the next sieve, the tailings going to a purifier, while the throughs may be freed from what flour adheres to them by a centrifugal dressing machine and then treated by another purifier. A form of scalper which has come into general use on the continent of Europe, and to a lesser extent in Great Britain and America, is known as the plansifter. This machine, of Hungarian origin, is simply a collection of superimposed flat sieves in one box, and will scalp or sort out any kind of break stock very efficiently. A system of grading the tailings, that is, the rejections of the scalpers, introduced by James Harrison Carter (Carter-Zimmer patent), was known as pneumatic sorting. Its object was to supplement the work of the scalpers by classifying the tailings by means of air-currents. To this end each scalper was followed by a machine arranged somewhat like a gravity purifier; that is to say, a current of air drawn through the casing of the sorter allowed the heaviest and best material to drop down straight, while the lighter stuff was deposited in one or other of further compartments formed by obliquely placed adjustable cant boards. So searching was this grading, that from the first sorter of a four-break plant four separations would be obtained, the first going to the second break, the second joining the first separation from the second sorter and being fed to the third break, while the third went with the best separation of the third sorter to the fourth break, and the last separation from all the sorters went straight into the bran sack. The work of the break-rolls was greatly simplified and reduced by this sorting process, as each particle of broken wheat went exactly to that pair of break-rollers for which it was suitable, instead of all the material being run indiscriminately through all the break-rollers and thereby being cut up with the necessary result of increasing the production of small bran.