Klebs has attempted to divide spores into three categories as follows: (1) kinospores, arising by relatively simple cell-divisions and subserving rapid dissemination and propagation, e.g. zoospores, conidia, endogonidia, stylospores, &c.; (2) paulospores, due to simple rearrangement of cell-contents, and subserving the persistence of the fungus through periods of exigency, e.g. gemmae, chlamydospores, resting-cells, cysts, &c.; (3) carpospores, produced by a more or less complex formative process, often in special fructifications, and subserving either or both multiplication and persistence, e.g. zygospores, oospores, brand-spores, aecidiospores, ascospores, basidiospores, &c. Little or nothing is gained by these definitions, however, which are especially physiological. In practice these various kinds of spores of fungi receive further special names in the separate groups, and names, moreover, which will appear, to those unacquainted with the history, to have been given without any consistency or regard to general principles; nevertheless, for ordinary purposes these names are far more useful in most cases, owing to their descriptive character, than the proposed new names, which have been only partially accepted.

Sporophores.—In some of the simpler fungi the spores are not borne on or in hyphae which can be distinguished from the vegetative parts or mycelium, but in the vast majority of cases the sporogenous hyphae either ascend free into the air or radiate into the surrounding water as distinct branches, or are grouped into special columns, cushions, layers or complex masses obviously different in colour, consistency, shape and other characters from the parts which gather up and assimilate the food-materials. The term “receptacle” sometimes applied to these spore-bearing hyphae is better replaced by sporophore. The sporophore is obsolete when the spore-bearing hyphae are not sharply distinct from the mycelium, simple when the constituent hyphae are isolated, and compound when the latter are conjoined. The chief distinctive characters of the sporogenous hyphae are their orientation, usually vertical; their limited apical growth; their peculiar branching, form, colour, contents, consistency; and their spore-production. According to the characters of the last, we might theoretically divide them into conidiophores, sporangiophores, gametophores, oidiophores, &c.; but since the two latter rarely occur, and more than one kind of spore or spore-case may occur on a sporophore, it is impossible to carry such a scheme fully into practice.

A simple sporophore may be merely a single short hypha, the end of which stops growing and becomes cut off as a conidium by the formation of a septum, which then splits and allows the conidium to fall. More generally the hypha below the septum grows forwards again, and repeats this process several times before the terminal conidium falls, and so a chain of conidia results, the oldest of which terminates the series (Erysiphe); when the primary branch has thus formed a basipetal series, branches may arise from below and again repeat this process, thus forming a tuft (Penicillium). Or the primary hypha may first swell at its apex, and put forth a series of short peg-like branches (sterigmata) from the increased surface thus provided, each of which develops a similar basipetal chain of conidia (Aspergillus), and various combinations of these processes result in the development of numerous varieties of exquisitely branched sporophores of this type (Botrytis, Botryosporium, Verticillium, &c.).

Fig. 3.—Cystopus candidus.

A. a, Conidia.

b, Conidiophores.

c, Conidium emitting zoospores.

d, Free zoospore.

B.og, Oogonium.

os, Oosphere.

an, Antheridium.

C. Formation of zoospores by oospores.

z, Free zoospores.

   (After De Bary.)

A second type is developed as follows: the primary hypha forms a septum below its apex as before, and the terminal conidium, thus abstricted, puts out a branch at its apex, which starts as a mere point and rapidly swells to a second conidium; this repeats the process, and so on, so that we now have a chain of conidia developed in acropetal succession, the oldest being below, and, as in Penicillium, &c., branches put forth lower down may repeat the process (Hormodendron). In all these cases we may speak of simple conidiophores. The simple sporophore does not necessarily terminate in conidia, however. In Mucor, for example, the end of the primary hypha swells into a spheroidal head (sporangium), the protoplasm of which undergoes segmentation into more or less numerous globular masses, each of which secretes an enveloping cell-wall and becomes a spore (endospore), and branched systems of sporangia may arise as before (Thamnidium). Such may be termed sporangiophores. In Sporodinia the branches give rise also to short branches, which meet and fuse their contents to form zygospores. In Peronospora, Saprolegnia, &c., the ends of the branches swell up into sporangia, which develop zoospores in their interior (zoosporangia), or their contents become oospheres, which may be fertilized by the contents of other branches (antheridia) and so form egg-cases (oogonia). Since in such cases the sporophore bears sexual cells, they may be conveniently termed gametophores.

Compound sporophores arise when any of the branched or unbranched types of spore-bearing hyphae described above ascend into the air in consort, and are more or less crowded into definite layers, cushions, columns or other complex masses. The same laws apply to the individual hyphae and their branches as to simple sporophores, and as long as the conidia, sporangia, gametes, &c., are borne on their external surfaces, it is quite consistent to speak of these as compound sporophores, &c., in the sense described, however complex they may become. Among the simplest cases are the sheet-like aggregates of sporogenous hyphae in Puccinia, Uromyces, &c., or of basidia in Exobasidium, Corticium, &c., or of asci in Exoascus, Ascocorticium, &c. In the former, where the layer is small, it is often termed a sorus, but where, as in the latter, the sporogenous layer is extensive, and spread out more or less sheet-like on the supporting tissues, it is more frequently termed a hymenium. Another simple case is that of the columnar aggregates of sporogenous hyphae in forms like Stilbum, Coremium, &c. These lead us to cases where the main mass of the sporophore forms a supporting tissue of closely crowded or interwoven hyphae, the sporogenous terminal parts of the hyphae being found at the periphery or apical regions only. Here we have the cushion-like type (stroma) of Nectria and many Pyrenomycetes, the clavate “receptacle” of Clavaria, &c., passing into the complex forms met with in Sparassis, Xylaria, Polyporei, and Agaricini, &c. In these cases the compound sporophore is often termed the hymenophore, and its various parts demand special names (pileus, stipes, gills, pores, &c.) to denote peculiarities of distribution of the hymenium over the surface.

Other series of modifications arise in which the tissues corresponding to the stroma invest the sporogenous hyphal ends, and thus enclose the spores, asci, basidia, &c., in a cavity. In the simplest case the stroma, after bearing its crop of conidia or oidia, develops ascogenous branches in the loosened meshes of its interior (e.g. Onygena). Another simple case is where the plane or slightly convex surface of the stroma rises at its margins and overgrows the sporogenous hyphal ends, so that the spores, asci, &c., come to lie in the depression of a cavity—e.g. Solenia, Cyphella—and even simpler cases are met with in Mortierella, where the zygospore is invested by the overgrowth of a dense mat of closely branching hyphae, and in Gymnoascus, where a loose mat of similarly barren hyphae covers in the tufts of asci as they develop.

In such examples as the above we may regard the hymenium (Solenia, Cyphella), zygospores, or asci as truly invested by later growth, but in the vast majority of cases the processes which result in the enclosure of the spores, asci, &c., in a “fructification” are much more involved, inasmuch as the latter is developed in the interior of hyphal tissues, which are by no means obviously homologous with a stroma. Thus in Penicillium, Eurotium, Erysiphe, &c., hyphal ends which are the initials of ascogenous branches, are invested by closely packed branches at an early stage of development, and the asci develop inside what has by that time become a complete investment. Whether a true sexual process precedes these processes or not does not affect the present question, the point being that the resulting spheroidal “fructification” (cleistocarp, perithecium) has a definite wall of its own not directly comparable with a stroma. In other cases (Hypomyces, Nectria) the perithecia arise on an already mature stroma, while yet more numerous examples can be given (Poronia, Hypoxylon, Claviceps, &c.) where the perithecia originate below the surface of a stroma formed long before. Similarly with the various types of conidial or oidial “fructifications,” termed pycnidia, spermogonia, aecidia, &c. In the simplest of these cases—e.g. Fumago—a single mycelial cell divides by septa in all three planes until a more or less solid clump results. Then a hollow appears in the centre owing to the more rapid extension of the outer parts, and into this hollow the cells lining it put forth short sporogenous branches, from the tips of which the spores (stylospores, conidia, spermatia) are abstricted. In a similar way are developed the pycnidia of Cicinnobolus, Pleospora, Cucurbitaria, Leptosphaeria and others. In other cases (Diplodia, Aecidium, &c.) conidial or oidial “fructifications” arise by a number of hyphae interweaving themselves into a knot, as if they were forming a Sclerotium. The outer parts of the mass then differentiate as a wall or investment, and the interior becomes a hollow, into which hyphal ends grow and abstrict the spores. Much more complicated are the processes in a large series of “fructifications,” where the mycelium first develops a densely packed mass of hyphae, all alike, in which labyrinths of cavities subsequently form by separation of hyphae in the previously homogeneous mass, and the hymenium covers the walls of these cavities and passages as with a lining layer. Meanwhile differences in consistency appear in various strata, and a dense outer protective layer (peridium), soft gelatinous layers, and so on are formed, the whole eventually attaining great complexity—e.g. puff-balls, earth-stars and various Phalloideae.

Spore-Distribution.—Ordinary conidia and similarly abstricted dry spores are so minute, light and numerous that their dispersal is ensured by any current of air or water, and we also know that rats and other burrowing animals often carry them on their fur; similarly with birds, insects, slugs, worms, &c., on claws, feathers, proboscides, &c., or merely adherent to the slimy body. In addition to these accidental modes of dispersal, however, there is a series of interesting adaptations on the part of the fungus itself. Passing over the locomotor activity of zoospores (Pythium, Peronospora, Saprolegnia) we often find spores held under tension in sporangia (Pilobolus) or in asci (Peziza) until ripe, and then forcibly shot out by the sudden rupture of the sporangial wall under the pressure of liquid behind—mechanism comparable to that of a pop-gun, if we suppose air replaced by watery sap. Even a single conidium, held tense to the last moment by the elastic cell-wall, may be thus shot forward by a spurt of liquid under pressure in the hypha abstricting it (e.g. Empusa), and similarly with basidiospores (Coprinus, Agaricus, &c.). A more complicated case is illustrated by Sphaerobolus, where the entire mass of spores, enclosed in its own peridium, is suddenly shot up into the air like a bomb from a mortar by the elastic retroversion of a peculiar layer which, up to the last moment, surrounded the bomb, and then suddenly splits above, turns inside out, and drives the former as a projectile from a gun. Gelatinous or mucilaginous degenerations of cell-walls are frequently employed in the interests of spore dispersal. The mucilage surrounding endospores of Mucor, conidia of Empusa, &c., serves to gum the spore to animals. Such gums are formed abundantly in pycnidia, and, absorbing water, swell and carry out the spores in long tendrils, which emerge for days and dry as they reach the air, the glued spores gradually being set free by rain, wind, &c. In oidial chains (Sclerotinia) a minute double wedge of wall-substance arises in the middle lamella between each pair of contiguous oidia, and by its enlargement splits the separating lamella. These disjunctors serve as points of application for the elastic push of the swelling spore-ends, and as the connecting outer lamella of cell-wall suddenly gives way, the spores are jerked asunder. In many cases the slimy masses of spermatia (Uredineae), conidia (Claviceps), basidiospores (Phallus, Coprinus), &c., emit more or less powerful odours, which attract flies or other insects, and it has been shown that bees carry the fragrant oidia of Sclerotinia to the stigma of Vaccinium and infect it, and that flies carry away the foetid spores of Phallus, just as pollen is dispersed by such insects. Whether the strong odour of trimethylamine evolved by the spores of Tilletia attracts insects is not known.

The recent observations and exceedingly ingenious experiments of Falck have shown that the sporophores of the Basidiomycetes—especially the large sporophores of such forms as Boletus, Polyporus—contain quantities of reserve combustible material which are burnt up by the active metabolism occurring when the fruit-body is ripe. By this means the temperature of the sporophore is raised and the difference between it and the surrounding air may be one of several degrees. As a result convection currents are produced in the air which are sufficient to catch the basidiospores in their fall and carry them, away from the regions of comparative atmospheric stillness near the ground, to the upper air where more powerful air-currents can bring about their wide distribution.