Fig. 43.—Seed of Pansy (Viola tricolor) cut vertically. The embryo pl is axial, in the midst of fleshy endosperm al. The seed is anatropal, and the embryo is homotropal; the cotyledons co point to the base of the nucellus or chalaza ch, while the radicle, or the other extremity of the embryo, points to the micropyle, close to the hilum h. The hilum or base of the seed, and the chalaza or base of the nucellus are united by means of the raphe r.
Fig. 44.—Seed of the Red Campion (Lychnis), cut vertically, showing the peripheral embryo, with its two cotyledons and its radicle. The embryo is curved round the albumen, so that its cotyledons and radicle both come near the hilum (amphitropal).
Fig. 45.—Mature dicotyledonous embryo of the Almond, with one of the cotyledons removed. r, Radicle; t, young stem or caulicle; c, one of the cotyledons left; i, line of insertion of the cotyledon which has been removed; g, plumule.
Fig. 46.—Exalbuminous seed of Wallflower (Cheiranthus) cut vertically. The radicle r is folded on the edges of the cotyledons c which are accumbent.
Fig. 47.—Transverse section of the seed of the Wallflower (Cheiranthus), showing the radicle r folded on the edges of the accumbent cotyledons c.
Fig. 48.—Transverse section of the seed of the Dame’s Violet (Hesperis). The radicle r is folded on the back of the cotyledons c, which are said to be incumbent.
Cotyledons are usually entire and sessile. But they occasionally become lobed, as in the walnut and the lime; or petiolate, as in Geranium molle; or auriculate, as in the ash. Like leaves in the bud, cotyledons may be either applied directly to each other, or may be folded in various ways. In geranium the cotyledons are twisted and doubled; in convolvulus they are corrugated; and in the potato and in Bunias, they are spiral,—the same terms being applied as to the foliage leaves. The radicle and cotyledons are either straight or variously curved. Thus, in some cruciferous plants, as the wallflower, the cotyledons are applied by their faces, and the radicle (figs. 46, 47) is folded on their edges, so as to be lateral; the cotyledons are here accumbent. In others, as Hesperis, the cotyledons (fig. 48) are applied to each other by their faces, and the radicle, r, is folded on their back, so as to be dorsal, and the cotyledons are incumbent. Again, the cotyledons are conduplicate when the radicle is dorsal, and enclosed between their folds. In other divisions the radicle is folded in a spiral manner, and the cotyledons follow the same course.
In many gymnosperms more than two cotyledons are present, and they are arranged in a whorl. This occurs in Coniferae, especially in the pine, fir (fig. 49), spruce and larch, in which six, nine, twelve and even fifteen have been observed. They are linear, and resemble in their form and mode of development the clustered or fasciculated leaves of the larch. Plants having numerous cotyledons are termed polycotyledonous. In species of Streptocarpus the cotyledons are permanent, and act the part of leaves. One of them is frequently largely developed, while the other is small or abortive.