In Germany, Ips and Passau on the Danube, and Gross Almerode in Hesse, are the best known localities producing fireclay goods, the crucibles from the last-mentioned place, known as Hessian crucibles, going all over the world. These, though not showing a great resistance to extreme heat, are very slightly affected by sudden alternations in heating, as they may be plunged cold into a strongly heated furnace without cracking, a treatment to which French and Stourbridge pots cannot be subjected with safety.

Plumbago or graphite is largely used in the production of crucibles, not in the pure state but in admixture with fireclay; the proportion of the former varies with the quality from 25 to nearly 50%. These are the most enduring of all crucibles, the best lasting out 70 or 80 meltings in brass foundries, about 50 with bronze, and 8 to 10 in steel-melting.

Silica is used in furnace-building in the forms of sand, ganister, a finely ground sandstone from the Coal Measures of Yorkshire, and the analogous substance known as Dinas clay, which is really nearly pure silica, containing at most about 2½% of bases. Dinas clay is found at various places in the Vale of Neath in South Wales, in the form of a loose disintegrated sandstone, which is crushed between rollers, mixed with about 1% of lime, and moulded into bricks that are fired in kilns at a very high temperature. These bricks are specially used for the roof, fire arches, and other parts subjected to intense heat in reverberatory steel-melting furnaces, and, although infusible under ordinary conditions, are often fairly melted by the heat without fluxing or corrosion after a certain amount of exposure. Ganister, a slightly plastic siliceous sand, is similarly used for the lining of Bessemer steel converters; it is found in the neighbourhood of Sheffield.

Alumina as a refractory material is chiefly used in the form of bauxite, but its applications are somewhat special. It has been found to stand well for the linings of rotatory puddling furnaces, where, under long-continued heating, it changes into a substance as hard and infusible as natural emery. In the Paris Exhibition of 1878 bricks very hard and dense in character, said to be of pure alumina, were exhibited by Muller & Co. of Paris, as well as bricks of magnesia, the latter being specially remarkable for their great weight. They are intended for use at the extreme temperatures obtainable in steel furnaces, or for the melting of platinum before the oxy-hydrogen blowpipe. For the latter purpose, however, lime is generally used; but as this substance has only small stability, it is usually bedded in a casing of firebrick. Oxide of chromium and chrome iron ore have been proposed as refractory crucible materials. The former may be used as a bed for melting platinum in the same way as lime or magnesia, without affecting the quality of the metal.

Ferric oxide, though not strictly infusible, is largely used as a protecting lining for furnaces in which malleable iron is made, a portion of the ore being reduced and recovered in the process. In an oxidizing atmosphere it is indifferent to silica, and therefore siliceous bricks containing a considerable proportion of ferric oxide, when used in flues of boilers, brewers’ coppers, &c. and similar situations, are perfectly fire-resisting so long as the heated gas contains a large proportion of unconsumed air. The red firebricks known as Windsor bricks, which are practically similar in composition to soft red sandstone, are of this character.

The electric furnace has led to the discovery of several important materials, which have been employed as furnace linings. Carborundum (q.v.) was applied by Engels in 1899, firebricks being washed with carborundum paste and then baked. Siloxicon, a compound of carbon, silicon and oxygen, formed from carbon and silica in the electric furnace, was patented by E.G. Acheson in 1903. It is very refractory, and is applied by mixing with water and some bond, such as sodium silicate or gas-tar. An amorphous, soft silicon carbide, also formed in the electric furnace, was patented by B. Talbot in 1899. For basic linings, magnesia crystallized in the electric furnace is being extensively used, replacing dolomite to some extent (see E. Kilburn Scott, “Refractory Materials for Furnace Linings,” Faraday Soc., 1906, p. 289).

Furnace Construction.—In the construction of furnaces provision has to be made for the unequal expansion of the different parts under the effect of heat. This is especially necessary in the case of reverberatory furnaces, which are essentially weak structures, and therefore require to be bound together by complicated systems of tie rods and uprights or buck staves. The latter are very commonly made of old flat bottom rails, laid with the flat of the flange against the wall. Puddling furnaces are usually entirely cased with iron plates, and blast furnaces with hoops round each course of the stack, or in those of thinner constructions the firebrick work is entirely enclosed in a wrought iron casing or jacket. Such parts as may be subjected to extreme heat and the fretting action of molten material, as the tuyere and slag breasts of blast furnaces, and the fire bridges and bed plates of reverberatory furnaces, are often made in cast iron with double walls, a current of water or air being kept circulating through the intermediate space. In this way the metal, owing to its high conductivity and low specific heat as compared to that of water, is kept at a temperature far below its melting point if the water is renewed quickly enough. It is of course necessary in such cases that the circulation shall be perfectly free, in order to prevent the accumulation of steam under pressure in the interior of the casting. This method has received considerable extension, notably in furnace-smelting of iron ores containing manganese, where the entire hearth is often completely water-cased, and in some lead furnaces where no firebrick lining is used, the lower part of the furnace stack being a mere double iron box cooled by water sufficiently to keep a coating of slag adhering to the inner shell which prevents the metal from being acted upon.

Mechanical Furnaces.—The introduction and withdrawal of the charges in fusion furnaces is effected by gravitation, the solid masses of raw ore, fuel and flux being thrown in at the top, and flowing out of the furnace at the taphole or slag run at the bottom. Vertical kilns, such as those used for burning limestone, are worked in a similar manner—the raw stone going in at the top, and the burnt product falling through holes in the bottom when allowed to do so. With reverberatory calciners, however, where the work is done upon a horizontal bed, a considerable amount of hand labour is expended in raking out the charge when finished, and in drawing slags from fusion furnaces; and more particularly in the puddling process of refining iron the amount of manual exertion required is very much greater. To diminish the item of expenditure on this head, various kinds of mechanical furnaces have been adopted, all of which can be classified under three heads of gravitating furnaces, mechanical stirrers and revolving furnaces.

1. In gravitating furnaces the bed is laid at a slope just within the angle of repose of the charge, which is introduced at the upper end, and is pushed down the slope by fresh material, when necessary, in the contrary direction to the flame which enters at the lower end. Gerstenhofer’s pyrites burner is a furnace of this class. It has a tall vertical chamber heated from below, and traversed by numerous narrow horizontal cross bars at different heights. The ore in fine powder is fed in at the top, through a hopper, in a regular thin stream, by a pair of rollers, and in falling lodges on the flats of the bars, forming a talus upon each of the height corresponding to the angle of rest of the material, which is, however, at short intervals removed to lower levels by the arrival of fresh ore from above. In this way a very large surface is exposed to the heat, and the ore, if containing sufficient sulphur to maintain the combustion, is perfectly burned when it arrives at the bottom; if, however, it is imperfectly sized or damp, or if it contains much earthy matter, the result is not very satisfactory. There are many other furnaces in which the same principle is utilized.

2. Mechanical stirrers constitute a second division of mechanical furnaces, in which the labour of rabbling or stirring the charges is performed by combinations of levers and wheel-work taking motion from a rotating shaft, and more or less perfectly imitating the action of hand labour. They are almost entirely confined to puddling furnaces.