7. It may be that there exist functions which are differentiable throughout an interval in which their differential coefficients are not integrable; if, however, F(x) is a function whose differential coefficient, F′(x), is integrable in an interval, then

F(x) = ∫ xa F′(x)dx + const.,

where a is a fixed point, and x a variable point, of the interval. Similarly, if any one of the four derivates of a function is integrable in an interval, all are integrable, and the integral of either differs from the original function by a constant only.

The theorems (4), (6), (7) show that there is some discrepancy between the indefinite integral considered as the function which has a given function as its differential coefficient, and as a definite integral with a variable end-value.

We have also two theorems concerning the integral of the product of two integrable functions ƒ(x) and φ(x); these are known as “the first and second theorems of the mean.” The first theorem of the mean is that, if φ(x) is one-signed throughout the interval between a and b, there is a number M intermediate between the superior and inferior limits, or greatest and least values, of ƒ(x) in the interval, which has the property expressed by the equation

M ∫ ba φ(x)dx = ∫ ba ƒ(x)φ(x)dx

The second theorem of the mean is that, if ƒ(x) is monotonous throughout the interval, there is a number ξ between a and b which has the property expressed by the equation

∫ ba ƒ(x) φ(x)dx = ƒ(a) ∫ ξa φ(x)dx + ƒ(b) ∫ bξ φ(x)dx.

(See [Fourier’s Series].)

16. Improper Definite Integrals.—We may extend the idea of integration to cases of functions which are not defined at some point, or which tend to become infinite in the neighbourhood of some point, and to cases where the domain of the argument extends to infinite values. If c is a point in the interval between a and b at which ƒ(x) is not defined, we impose a restriction on the points x′r of the definition: none of them is to be the point c. This comes to the same thing as defining ∫ ba ƒ(x)dx to be