where

|εμ| < gΣ ∞n=m+1 1< g.
ρμ 2nρμ 2m

Now draw barriers as before, directed from the origin, joining the singular point of φ(z) to z = ∞, take a finite region excluding all these barriers, let ρ be a quantity less than the radii of convergence of all the power series developments of φ(z) about interior points of this region, so chosen moreover that no circle of radius ρ with centre at an interior point of the region includes any singular point of φ(z), let g be such that |φ(z)| < g for all circles of radius ρ whose centres are interior points of the region, and, x being any interior point of the region, choose the positive integer n so that 1/n |x| < 1⁄3ρ; then take the points a1 = x/n, a2 = 2x/n, a3 = 3x/n, ... an = x; it is supposed that the region is so taken that, whatever x may be, all these are interior points of the region. Then by what has been said, replacing x, z respectively by 0 and x/n, we have

φ(μ) (a1) = Σ m1λ1=0 φ(μ + λ1) (0)( x) λ1 + αμ
λ1!n

with

αμ < g/ρμ 2m1,

provided (μ + m1 + 1)μ < (2⁄3)m1 + 1; in fact for μ ⋜ 2n2n−2 it is sufficient to take m1 = n2n; by another application of the same inequality, replacing x, z respectively by a1 and x/n, we have

φ(μ) (a2) = Σ m2λ2=0φ(μ + λ2) (a1)( x) λ2 + β′μ ,
λ2! n

where