The choice of absorbents and the order in which the gases are to be estimated is strictly limited. Confining ourselves to cases where titration methods are not employed, the general order is as follows: carbon dioxide, olefines, oxygen, carbon monoxide, hydrogen, methane and nitrogen (by difference). This scheme is particularly applicable to coal-gas. Carbon dioxide is absorbed by a potash solution containing one part of potash to between two and three of water; the stronger solution absorbs about 40 volumes of the gas. The olefines—ethylene, &c.—are generally absorbed by a very strong sulphuric acid prepared by adding sulphur trioxide to sulphuric acid to form a mixture which solidifies when slightly cooled. Bromine water is also employed. Oxygen is absorbed by stick phosphorus contained in a tubulated pipette filled with water. The temperature must be above 18°; and the absorption is prevented by ammonia, olefines, alcohol, and some other substances. An alkaline solution of pyrogallol is also used; this solution rapidly absorbs oxygen, becoming black in colour, and it is necessary to prepare the solution immediately before use. Carbon monoxide is absorbed by a solution of cuprous chloride in hydrochloric acid or, better, in ammonia. When small in amount, it is better to estimate as carbon dioxide by burning with oxygen and absorbing in potash; when large in amount, the bulk is absorbed in ammoniacal cuprous chloride and the residue burned. Hydrogen may be estimated by absorption by heated palladium contained in a capillary through which the gas is passed, or by exploding (under reduced pressure) with an excess of oxygen, and measuring the diminution in volume, two-thirds of which is the volume of hydrogen. The explosion method is unsatisfactory when the gas is contained over water, and is improved by using mercury. Methane cannot be burnt in this way even when there is much hydrogen present, and several other methods have been proposed, such as mixing with air and aspirating over copper oxide heated to redness, or mixing with oxygen and burning in a platinum tube heated to redness, the carbon dioxide formed being estimated by absorption in potash. Gases soluble in water, such as ammonia, hydrochloric acid, sulphuretted hydrogen, sulphur dioxide, &c., are estimated by passing a known volume of the gas through water and titrating the solution with a standard solution. Many types of absorption vessel are in use, and the standard solutions are generally such that 1 c.c. of the solution corresponds to 1 c.c. of the gas under normal conditions.
| (By permission of Messrs Baird & Tatlock.) |
| Fig. 3. |
Many forms of composite gas-apparatus are in use. One of the commonest is the Orsat shown in fig. 3. The gas is measured in the graduated cylinder on the right, which is surrounded by a water jacket and provided with a levelling bottle. At the top it is connected by a capillary tube bent at right angles to a series of absorbing vessels, the connexion being effected by stopcocks. These vessels consist of two vertical cylinders joined at the bottom by a short tube. The cylinder in direct communication with the capillary is filled with glass tubes so as to expose a larger surface of the absorbing solution to the gas. The other cylinder is open to the air and serves to hold the liquid ejected from the absorbing cylinder. Any number of bulbs can be attached to the horizontal capillary; in the form illustrated there are four, the last being a hydrogen pipette in which the palladium is heated in a horizontal tube by a spirit lamp. At the end of the horizontal tube there is a three-way cock connecting with the air or an aspirator. To use the apparatus, the measuring tube is completely filled with water by raising the levelling bottle. The absorbing vessels are then about half filled with the absorbents, and, by opening the cocks and aspirating, the liquid is brought so as completely to fill the bulbs nearer the capillary. The cocks are then closed. By opening the three-way cock to the supply of the test gas and lowering the levelling bottle, any desired amount can be drawn into the measuring tube. The absorption is effected by opening the cock of an absorbing vessel and raising the levelling bottle. The same order of absorption and general directions pertaining to the use of Hempel pipettes have to be adopted.
Although the earliest attempts at gas analysis were made by Scheele, Priestley, Cavendish, Lavoisier, Dalton, Gay-Lussac and others, the methods were first systematized by R. Bunsen, who began his researches in 1838. He embodied his results in his classical Gasometrische Methoden (1857, second edition 1877), a work translated into English by H. Roscoe. Clemens Winkler contributed two works, Anleitung zur chemischen Untersuchung der Industriegase (1876-1877) and Lehrbuch der technischen Gasanalyse (2nd ed., 1892), both of which are very valuable for the commercial applications of the methods. W. Hempel’s researches are given in his Neue Methode zur Analyse der Gase (1880) and Gasanalytische Methoden (1890, 3rd ed. 1900).
Gas Manufacture
1. Illuminating Gas.—The first practical application of gas distilled from coal as an illuminating agent is generally ascribed to William Murdoch, who between the years of 1792 and 1802 demonstrated the possibility of Historical. making gas from coal and using it as a lighting agent on a large scale. Prior to 1691, however, Dr John Clayton, dean of Kildare, filled bladders with inflammable gas obtained by the distillation of coal, and showed that on pricking the bladders and applying a light to the escaping gas it burnt with a luminous flame, and in 1726 Stephen Hales published the fact that by the distillation of 158 grains of Newcastle coal, 180 cub. in. of inflammable air would be obtained. Jean Pierre Minckelers, professor of natural philosophy in the university of Louvain, and later of chemistry and physics at Maestricht, made experiments on distilling gas from coal with the view of obtaining a permanent gas sufficiently light for filling balloons, and in 1785 experimentally lighted his lecture room with gas so obtained as a demonstration to his students, but no commercial application was made of the fact. Lord Dundonald, in 1787, whilst distilling coal for the production of tar and oil, noticed the formation of inflammable gas, and even used it for lighting the hall of Culross Abbey. It is clear from these facts that, prior to Murdoch’s experiments, it was known that illuminating gas could be obtained by the destructive distillation of coal, but the experiments which he began at Redruth in 1792, and which culminated in the lighting of Messrs Boulton, Watt & Co.’s engine works at Soho, near Birmingham, in 1802, undoubtedly demonstrated the practical possibility of making the gas on a large scale, and burning it in such a way as to make coal-gas the most important of the artificial illuminants. An impression exists in Cornwall, where Murdoch’s early experiments were made, that it was a millwright named Hornblower who first suggested the process of making gas to Murdoch, but, as has been shown, the fact that illuminating gas could be obtained from coal by distillation was known a century before Murdoch made his experiments, and the most that can be claimed for him is that he made the first successful application of it on a practical scale.
In 1799 a Frenchman named Philippe Lebon took out a patent in Paris for making an illuminating gas from wood, and gave an exhibition of it in 1802, which excited a considerable amount of attention on the European continent. It was seen by a German, F.A. Winsor, who made Lebon an offer for his secret process for Germany. This offer was, however, declined, and Winsor returned to Frankfort determined to find out how the gas could be made. Having quickly succeeded in discovering this, he in 1803 exhibited before the reigning duke of Brunswick a series of experiments with lighting gas made from wood and from coal. Looking upon London as a promising field for enterprise, he came over to England, and at the commencement of 1804 took the Lyceum theatre, where he gave demonstrations of his process. He then proceeded to float a company, and in 1807 the first public street gas lighting took place in Pall Mall, whilst in 1809 he applied to parliament to incorporate the National Heat and Light Company with a capital of half a million sterling. This application was opposed by Murdoch on the ground of his priority in invention, and the bill was thrown out, but coming to parliament for a second time in 1810, Winsor succeeded in getting it passed in a very much curtailed form, and, a charter being granted later in 1812, the company was called the Chartered Gas Light and Coke Company, and was the direct forerunner of the present London Gas Light and Coke Company. During this period Frederick C. Accum (1769-1838), Dr W. Henry and S. Clegg did so much by their writings and by the improvements they introduced in the manufacture, distribution and burning of coal gas, that their names have become inseparably connected with the subject.
In 1813 Westminster Bridge, and in the following year the streets of Westminster, were lighted with gas, and in 1816 it became common in London. After this so rapid was the progress of this new mode of illumination that in The growth of gas lighting. the course of a few years it was adopted by all the principal towns in the United Kingdom for lighting streets as well as shops and public edifices. In private houses it found its way more slowly, partly from an apprehension of danger attending its use, and partly from the discomfort which was experienced in many cases through the gas being distributed without purification, and to the careless and imperfect manner in which the service pipes were first fitted. It was during the last four decades of the 19th century that the greatest advance was made, this period having been marked not only by many improvements in the manufacture of illuminating gas, but by a complete revolution in the methods of utilizing it for the production of light. In 1875 the London Argand, giving a duty of 3.2 candles illuminating power per cubic foot of ordinary 16 candle gas, was looked upon as the most perfect burner of the day, and little hope was entertained that any burner capable of universal adoption would surpass it in its power of developing light from the combustion of coal gas; but the close of the century found the incandescent mantle and the atmospheric burner yielding six times the light that was given by the Argand for the consumption of an equal volume of gas, and to-day, by supplying gas at an increased pressure, a light of ten times the power may be obtained. Since the advent of the incandescent mantle, the efficiency of which is dependent upon the heating power of the gas more than on its illuminating power, the manufacture of coal gas has undergone considerable modifications.
Coal, the raw material from which the gas is produced by a process of destructive distillation, varies very widely in composition (see [Coal]), and it is only the class of coals rich in hydrogen, Coals used for gas-making. known as bituminous coal, that can with advantage be utilized in gas manufacture. Coals of this character are obtained in England from the Newcastle and Durham field, South Yorkshire, Derbyshire and Barnsley districts, and an idea of their ultimate composition may be derived from the following table:—
| Carbon. | Hydrogen | Sulphur. | Nitrogen | Oxygen. | Ash. | Moisture. | |
| Newcastle gas coal | 82.16 | 4.83 | 1.00 | 1.23 | 6.82 | 3.20 | 0.76 |
| Durham gas coal | 84.34 | 5.30 | 0.73 | 1.73 | 4.29 | 2.42 | 1.14 |
| South Yorkshire silkstone | 80.46 | 5.09 | 1.66 | 1.67 | 6.79 | 3.30 | 1.03 |
| Derbyshire silkstone | 76.96 | 5.04 | 2.39 | 1.77 | 6.92 | 3.28 | 3.64 |
| Barnsley gas coal | 75.64 | 4.94 | 2.84 | 1.65 | 7.25 | 4.28 | 3.40 |