The vertical retort was one of the first forms experimented with by Murdoch, but owing to the difficulty of withdrawing the coke, the low illuminating power of the gas made in it, and the damage to the retort itself, due to the swelling of the charge during distillation, it was quickly abandoned. About the beginning of the 20th century, however, the experiments of Messrs Settle and Padfield at Exeter, Messrs Woodall and Duckham at Bournemouth, and Dr Bueb in Germany showed such encouraging results that the idea of the vertical retort again came to the front, and several systems were proposed and tried. The cause of the failure of Murdoch’s original vertical retort was undoubtedly that it was completely filled with coal during charging, with the result that the gas liberated from the lower portions of the retort had to pass through a deep bed of red-hot coke, which, by over-baking the gas, destroyed the illuminating hydrocarbons. There is no doubt that the question of rapidly removing the gas, as soon as it is properly formed, from the influence of the highly-heated walls of the retort and residual coke, is one of the most important in gas manufacture.

In the case of horizontal retorts the space between the top of the coal and the retort is of necessity considerable in order to permit the introduction of the scoop and rake; the gas has therefore a free channel to travel along, but has too much contact with the highly heated surface of the retort before it leaves the mouthpiece. In the case of inclined retorts this disadvantage is somewhat reduced, but with vertical retorts the ideal conditions can be more nearly approached. The heating as well as the illuminating value of the gas per unit volume is lowered by over-baking, and Dr Bueb gives the following figures as to the heating value of gas obtained from the same coal but by different methods of carbonization:—

VerticalRetorts, 604 British thermal units per cub. ft.
InclinedRetorts, 584 British thermal units per cub. ft.
HorizontalRetorts, 570 British thermal units per cub. ft.

Of the existing forms of vertical retort it remains a matter to be decided whether the coal should be charged in bulk to the retort or whether it should be introduced in small quantities at regular and short intervals; by this latter means (the characteristic feature of the Settle-Padfield process) a continuous layer of coal is in process of carbonization on the top, whilst the gas escapes without contact with the mass of red-hot coke, a considerable increase in volume and value in the gas and a much denser coke being the result.

Fig. 7.—Hydraulic Main.

From the retort the gas passes by the ascension pipe to the hydraulic main (fig. 7). This is a long reservoir placed in a horizontal position and supported by columns upon the top of the retort stack, and through it is maintained a slow but Hydraulic main. constant flow of water, the level of which is kept uniform. The ascension pipe dips about 2 in. into the liquid, and so makes a seal that allows of any retort being charged singly without the risk of the gas produced from the other retorts in the bench escaping through the open retort. Coal gas, being a mixture of gases and vapours of liquids having very varying boiling points, must necessarily undergo physical changes when the temperature is lowered. Vapours of liquids of high boiling point will be condensed more quickly than those having lower boiling points, but condensation of each vapour will take place in a definite ratio with the decrease of temperature, the rate being dependent upon the boiling point of the liquid from which it is formed. The result is that from the time the gaseous mixture leaves the retort it begins to deposit condensation products owing to the decrease in temperature. Condensation takes place in the ascension pipe, in the arch piece leading to the hydraulic main, and to a still greater extent in the hydraulic main itself where the gas has to pass through water.

Ascension pipes give trouble unless they are frequently cleared by an instrument called an “auger,” whilst the arch pipe is fitted with hand holes through which it may be easily cleared in case of stoppage. The most soluble of the constituents of crude coal gas is ammonia, 780 volumes of which are soluble in one volume of water at normal temperature and pressure, and the water in the hydraulic main absorbs a considerable quantity of this compound from the gas and helps to form the ammoniacal liquor, whilst, although the liquor is well agitated by the gas bubbling through it, a partial separation of tar from liquor is effected by gravitation. The liquor is run off at a constant rate from the hydraulic main to the store tank, and the gas passes from the top of the hydraulic main to the foul main.

The gas as it leaves the hydraulic main is still at a temperature of from 130° to 150° F., and should now be reduced as nearly as possible to the temperature of the surrounding atmosphere. The operation of efficient condensing is not by any means as Condensation. simple as might be supposed. The tar and liquor when condensed have a dissolving action on various valuable light-giving constituents of the gas, which in the ordinary way would not be deposited by the lowering of temperature, and for this reason the heavy tar, and especially that produced in the hydraulic main, should come in contact with the gas as little as possible, and condensation should take place slowly.

The main difficulty which the condenser ought to overcome and upon which its efficiency should depend is the removal of naphthalene: this compound, which is present in the gas, condenses on cooling to a solid which crystallizes out in the form of white flakes, and the trouble caused by pipe stoppages in the works as well as in the district supplied is very considerable. The higher the heat of carbonization the more naphthalene appears to be produced, and gas managers of to-day find the removal of naphthalene from the gas a difficult problem to solve. It was for some time debated as to whether naphthalene added materially to the illuminating value of the gas, and whether an endeavour should be made to carry it to the point of combustion; but it is now acknowledged that it is a troublesome impurity, and that the sooner it is extracted the better. Gas leaves the retorts saturated with naphthalene, and its capacity for holding that impurity seems to be augmented by the presence of water vapour. The condenser, by effecting the condensation of water vapour, also brings about the deposition of solid naphthalene, apart from that which naturally condenses owing to reduction of temperature.

Condensers are either air-cooled or water-cooled, or both. In the former case the gas traverses pipes exposed to the atmosphere and so placed that the resulting products of condensation may be collected at the lowest point. Water is a more efficient cooling medium than air, owing to its high specific heat, and the degree of cooling may be more easily regulated by its use. In water-cooled condensers it is usual to arrange that the water passes through a large number of small pipes contained in a larger one through which the gas flows, and as it constantly happened that condenser pipes became choked by naphthalene, the so-called reversible condenser, in which the stream of gas may be altered from time to time and the walls of the pipes cleaned by pumping tar over them, is a decided advance.