GLACIER (adopted from the French; from glace, ice, Lat. glacies), a mass of compacted ice originating in a snow-field. Glaciers are formed on any portion of the earth’s surface that is permanently above the snow-line. This line varies locally in the same latitudes, being in some places higher than in others, but in the main it may be described as an elliptical shell surrounding the earth with its longest diameter in the tropics and its shortest in the polar regions, where it touches sea-level. From the extreme regions of the Arctic and Antarctic circles this cold shell swells upwards into a broad dome, from 15,000 to 18,000 ft. high over the tropics, truncating, as it rises, a number of peaks and mountain ranges whose upper portions like all regions above this thermal shell receive all their moisture in the form of snow. Since the temperature above the snow-line is below freezing point evaporation is very slight, and as the snow is solid it tends to accumulate in snow-fields, where the snow of one year is covered by that of the next, and these are wrapped over many deeper layers that have fallen in previous years. If these piles of snow were rigid and immovable they would increase in height until the whole field rose above the zone of ordinary atmospheric precipitation, and the polar ice-caps would add a load to these regions that would produce far-reaching results. The mountain regions also would rise some miles in height, and all their features would be buried in domes of snow some miles in thickness. When, however, there is sufficient weight the mass yields to pressure and flows outwards and downwards. Thus a balance of weight and height is established, and the ice-field is disintegrated principally at the edges, the surplus in polar regions being carried off in the form of icebergs, and in mountain regions by streams that flow from the melting ends of the glaciers.

Formation.—The formation of glaciers is in all cases due to similar causes, namely, to periodical and intermittent falls of snow. After a snow-fall there is a period of rest during which the snow becomes compacted by pressure and assumes the well-known granular character seen in banks and patches of ordinary snow that lie longest upon the ground when the snow is melting. This is the firn or névé. The next fall of snow covers and conceals the névé, but the light fresh crystals of this new snow in turn become compacted to the coarsely crystalline granular form of the underlying layer and become névé in turn. The process goes on continually; the lower layers become subject to greater and greater pressure, and in consequence become gradually compacted into dense clear ice, which, however, retains its granular crystalline texture throughout. The upper layers of névé are usually stratified, owing to some individual peculiarity in the fall, or to the accumulation of dust or débris upon the surface before it is covered by fresh snow. This stratification is often visible on the emerging glacier, though it is to be distinguished from the foliation planes caused by shearing movement in the body of the glacier ice.

Types.—The snow-field upon which a glacier depends is always formed when snow-fall is greater than snow-waste. This occurs under varying conditions with a differently resulting type of glacier. There are limited fields of snow in many mountain regions giving rise to long tongues of ice moving slowly down the valleys and therefore called “valley glaciers.” The greater part of Greenland is covered by an ice-cap extending over nearly 400,000 sq. m., forming a kind of enormous continuous glacier on its lower slopes. The Antarctic ice region is believed to extend over more than 3,000,000 sq. m. Each of these continental fields, besides producing block as distinguished from tongue glaciers, sends into the sea a great number of icebergs during the summer season. These ice-caps covering great regions are by far the most important types. Between these “polar” or “continental glaciers” and the “alpine” type there are many grades. Smaller detached ice-caps may rest upon high plateaus as in Iceland, or several tongues of ice coming down neighbouring valleys may splay out into convergent lobes on lower ground and form a “piedmont glacier” such as the Malaspina Glacier in Alaska. When the snow-field lies in a small depression the glacier may remain suspended in the hollow and advance no farther than the edge of the snow-field. This is called a “cliff-glacier,” and is not uncommon in mountain regions. The end of a larger glacier, or the edge of an ice-sheet, may reach a precipitous cliff, where the ice will break from the edge of the advancing mass and fall in blocks to the lower ground, where a “reconstructed glacier” will be formed from the fragments and advance farther down the slope.

When a glacier originates upon a dome-shaped or a level surface the ice will deploy radially in all directions. When a snow-field is formed above steep valleys separated by high ridges the ice will flow downwards in long streams. If the valleys under the snow-fields are wide and shallow the resultant glaciers will broaden out and partially fill them, and in all cases, since the conditions of glacier formation are similar, the resultant form and the direction of motion will depend upon the amount of ice and the form of the surface over which the glacier flows. A glacier flowing down a narrow gorge to an open valley, or on to a plain, will spread at its foot into a fan-shaped lobe as the ice spreads outwards while moving downwards. An ice-cap is in the main thickest at the centre, and thins out at the edges. A valley glacier is thickest at some point between its source and its end, but nearer to its source than to its termination, but its thickness at various portions will depend upon the contour of the valley floor over which the glacier rides, and may reach many hundreds of feet. At its centre the Greenland ice-cap is estimated to be over 5000 ft. thick. In all cases the glacier ends where the waste of ice is greater than the supply, and since the relationship varies in different years, or cycles of years, the end of a glacier may advance or retreat in harmony with greater or less snow-fall or with cooler or hotter summers. There seems to be a cycle of inclusive contraction and expansion of from 35 to 40 or 50 years. At present the ends of the Swiss glaciers are cradled in a mass of moraine-stuff due to former extension of the glaciers, and investigations in India show that in some parts of the Himalayas the glaciers are retreating as they are in North America and even in the southern hemisphere (Nature, January 2, 1908, p. 201).

Movement.—The fact that a glacier moves is easily demonstrated; the cause of the movement is pressure upon a yielding mass; the nature of the movement is still under discussion. Rows of stakes or stones placed in line across a glacier are found to change their position with respect to objects on the bank and also with regard to each other. The posts in the centre of the ice-stream gradually move away from those at the side, proving that the centre moves faster than the sides. It has also been proved that the surface portions move more rapidly than the deeper layers and that the motion is slowest at the sides and bottom where friction is greatest.

The rate of motion past the same spot is not uniform. Heat accelerates it, cold arrests it, and the pressure of a large amount of water stimulates the flow. The rate of flow under the same conditions varies at different parts of the glacier directly as the thickness of ice, the steepness of slope and the smoothness of rocky floor. Generally speaking, the rate of motion depends upon the amount of ice that forms the “head” pressure, the slope of the under surface and of the upper surface, the nature of the floor, the temperature and the amount of water present in the ice. The ordinary rate of motion is very slow. In Switzerland it is from 1 or 2 in. to 4 ft. per day, in Alaska 7 ft., in Greenland 50 to 60 ft., and occasionally 100 ft. per day in the height of summer under exceptional conditions of quantity of ice and of water and slope. Measurements of Swiss glaciers show that near the ice foot where wastage is great there is very little movement, and observations upon the inland border of Greenland ice show that it is almost stationary over long distances. In many aspects the motion of a body of ice resembles that of a body of water, and an alpine glacier is often called an ice-river, since like a river it moves faster in the centre than at the sides and at the top faster than at the bottom. A glacier follows a curve in the same way as a river, and there appear to be ice swirls and eddies as well as an upward creep on shelving curves recalling many features of stream action. The rate of motion of both ice-stream and river is accelerated by quantity and steepness of slope and retarded by roughness of bed, but here the comparison ends, for temperature does not affect the rate of water motion, nor will a liquid crack into crevasses as a glacier does, or move upwards over an adverse slope as a glacier always does when there is sufficient “head” of ice above it. So that although in many respects ice behaves as a viscous fluid the comparison with such a fluid is not perfect. The cause of glacier motion must be based upon some more or less complex considerations. The flakes of snow are gradually transformed into granules because the points and angles of the original flakes melt and evaporate more readily than the more solid central portions, which become aggregated round some master flake that continues to grow in the névé at the expense of its smaller neighbours, and increases in size until finally the glacier ice is composed of a mass of interlocked crystalline granules, some as large as a walnut, closely compacted under pressure with the principal crystalline axes in various directions. In the upper portions of the glacier movement due to pressure probably takes place by the gliding of one granule over another. In this connexion it must be noted that pressure lowers the melting point of ice while tension raises it, and at all points of pressure there is therefore a tendency to momentary melting, and also to some evaporation due to the heat caused by pressure, and at the intermediate tension spaces between the points of pressure this resultant liquid and vapour will be at once re-frozen and become solid. The granular movement is thus greatly facilitated, while the body of ice remains in a crystalline solid condition. In this connexion it is well to remember that the pressure of the glacier upon its floor will have the same result, but the effect here is a mass-effect and facilitates the gliding of the ice over obstacles, since the friction produces heat and the pressure lowers the melting point, so that the two causes tend to liquefy the portion where pressure is greatest and so to “lubricate” the prominences and enable the glacier to slide more easily over them, while the liquid thus produced is re-frozen when the pressure is removed.

In polar regions of very low temperature a very considerable amount of pressure must be necessary before the ice granules yield to momentary liquefaction at the points of pressure, and this probably accounts for the extreme thickness of the Arctic and Antarctic ice-caps where the slopes are moderate, for although equally low temperatures are found in high Alpine snow-fields the slopes there are exceedingly steep and motion is therefore more easily produced.

Observations made upon the Greenland glaciers indicate a considerable amount of “shearing” movement in the lower portions of a glacier. Where obstacles in the bed of the glacier arrest the movement of the ice immediately above it, or where the lower portion of the glacier is choked by débris, the upper ice glides over the lower in shearing planes that are sometimes strongly marked by débris caught and pushed forwards along these planes of foliation. It must be remembered that there is a solid push from behind upon the lower portion of a glacier, quite different from the pressure of a body of water upon any point, for the pressure of a fluid is equal in all directions, and also that this push will tend to set the crystalline granules in positions in which their crystalline axes are parallel along the gliding planes. The production of gliding planes is in some cases facilitated by the descent into the glacier of water melted during summer, where it expands in freezing and pushes the adjacent ice away from it, forming a surface along which movement is readily established.