Crown-glass has at the present day almost disappeared from the market, and it has been superseded by sheet-glass, the more modern processes described above being capable of producing much larger sheets of glass, free from the knob or “bullion” which may still be seen in old crown-glass windows. For a few isolated purposes, however, it is desirable to use a glass which has not been touched upon either surface and thus preserves the lustre of its “fire polish” undiminished; this can be attained in crown-glass but not in sheet, since one side of the latter is always more or less marked by the rubber used in the process of flattening. One of the few uses of crown-glass of this kind is the glass slides upon which microscopic specimens are mounted, as well as the thin glass slips with which such preparations are covered. A full account of the process of blowing crown-glass will be found in all older books and articles on the subject, so that it need only be mentioned here that the glass, instead of being blown into a cylinder, is blown into a flattened sphere, which is caused to burst at the point opposite the pipe and is then, by the rapid spinning of the glass in front of a very hot furnace-opening, caused to expand into a flat disk of large diameter. This only requires to be annealed and is then ready for cutting up, but the lump of glass by which the original globe was attached to the pipe remains as the bullion in the centre of the disk of glass.
Coloured Glass for Mosaic Windows.—The production of coloured glass for “mosaic” windows has become a separate branch of glass-making. Charles Winston, after prolonged study of the coloured windows of the 13th, 14th and 15th centuries, convinced himself that no approach to the colour effect of these windows could be made with glass which is thin and even in section, homogeneous in texture, and made and coloured with highly refined materials. To obtain the effect it was necessary to reproduce as far as possible the conditions under which the early craftsmen worked, and to create scientifically glass which is impure in colour, irregular in section, and non-homogeneous in texture. The glass is made in cylinders and in “crowns” or circles. The cylinders measure about 14 in. in length by 8 in. in diameter, and vary in thickness from 1⁄8 to 3⁄8 in. The crowns are about 15 in. in diameter, and vary in thickness from 1⁄8 to ½ in., the centre being the thickest. These cylinders and crowns may be either solid colour or flashed. Great variety of colour may be obtained by flashing one colour upon another, such as blue on green, and ruby on blue, green or yellow.
E. J. Prior has introduced an ingenious method of making small oblong and square sheets of coloured glass, which are thick in the centre and taper towards the edges, and which have one surface slightly roughened and one brilliantly polished. Glass is blown into an oblong box-shaped iron mould, about 12 in. in depth and 6 in. across. A hollow rectangular bottle is formed, the base and sides of which are converted into sheets. The outer surface of these sheets is slightly roughened by contact with the iron mould.
(D) Bottles and mechanically blown Glass.—The manufacture of bottles has become an industry of vast proportions. The demand constantly increases, and, owing to constant improvements in material in the moulds and in the methods of working, the supply fully keeps pace with the demand. Except for making bottles of special colours, gas-heated tank furnaces are in general use. Melting and working are carried on continuously. The essential qualities of a bottle are strength and power to resist chemical corrosion. The materials are selected with a view to secure these qualities. For the highest quality of bottles, which are practically colourless, sand, limestone and sulphate and carbonate of soda are used. The following is a typical analysis of high quality bottle-glass: SiO2, 69.15%; Na2O, 13.00%; CaO, 15.00%; Al2O3, 2.20%; and Fe2O3, 0.65%. For the commoner grades of dark-coloured bottles the glass mixture is cheapened by substituting common salt for part of the sulphate of soda, and by the addition of felspar, granite, granulite, furnace slag and other substances fusible at a high temperature. Bottle moulds are made of cast iron, either in two pieces, hinged together at the base or at one side, or in three pieces, one forming the body and two pieces forming the neck.
| Fig. 18.—Tool for moulding the inside and outside of the neck of a bottle. |
| C, Bottle. A, Conical piece of iron to form the inside of the neck. B, B, Shaped pieces of iron, which can be pressed upon the outside of the neck by the spring-handle H. |
A bottle gang or “shop” consists of five persons. The “gatherer” gathers the glass from the tank furnace on the end of the blowing-iron, rolls it on a slab of iron or stone, slightly expands the glass by blowing, and hands the blowing iron and glass to the “blower.” The blower places the glass in the mould, closes the mould by pressing a lever with his foot, and either blows down the blowing iron or attaches it to a tube connected with a supply of compressed air. When the air has forced the glass to take the form of the mould, the mould is opened and the blower gives the blowing iron with the bottle attached to it to the “wetter off.” The wetter off touches the top of the neck of the bottle with a moistened piece of iron and by tapping the blowing iron detaches the bottle and drops it into a wooden trough. He then grips the body of the bottle with a four-pronged clip, attached to an iron rod, and passes it to the “bottle maker.” The bottle maker heats the fractured neck of the bottle, binds a band of molten glass round the end of it and simultaneously shapes the inside and the outside of the neck by using the tool shown in fig. 18. The finished bottle is taken by the “taker in” to the annealing furnace. The bottles are stacked in iron trucks, which, when full, are moved slowly away from a constant source of heat.
The processes of manipulation which have been described, although in practice they are very rapidly performed, are destined to be replaced by the automatic working of a machine. Bottle-making machines, based on Ashley’s original patent, are already being largely used. They ensure absolute regularity in form and save both time and labour. A bottle-making machine combines the process of pressing with a plunger with that of blowing by compressed air. The neck of the bottle is first formed by the plunger, and the body is subsequently blown by compressed air admitted through the plunger. A sufficient weight of molten glass to form a bottle is gathered and placed in a funnel-shaped vessel which serves as a measure, and gives access to the mould which shapes the outside of the neck. A plunger is forced upwards into the glass in the neck-mould and forms the neck. The funnel is removed, and the plunger, neck-mould and the mass of molten glass attached to the neck are inverted. A bottle mould rises and envelops the mass of molten glass. Compressed air admitted through the plunger forces the molten glass to take the form of the bottle mould and completes the bottle.
In the case of the machine patented by Michael Owens of Toledo, U.S.A., for making tumblers, lamp-chimneys, and other goods of similar character, the manual operations required are (1) gathering the molten glass at the end of a blowing iron; (2) placing the blowing iron with the glass attached to it in the machine; (3) removing the blowing iron with the blown vessel attached. Each machine (fig. 19) consists of a revolving table carrying five or six moulds. The moulds are opened and closed by cams actuated by compressed air. As soon as a blowing iron is in connexion with an air jet, the sections of the mould close upon the molten glass, and the compressed air forces the glass to take the form of the mould. After removal from the machine, the tumbler is severed from the blowing iron, and its fractured edge is trimmed.
| Fig. 19.—Owens’s Glass-blowing Machine. g,g,g, Blowing-irons. |
Compressed air or steam is also used for fashioning very large vessels, baths, dishes and reservoirs by the “Sievert” process. Molten glass is spread upon a large iron plate of the required shape and dimensions. The flattened mass of glass is held by a rim, connected to the edge of the plate. The plate with the glass attached to it is inverted, and compressed air or steam is introduced through openings in the plate. The mass of glass, yielding to its own weight and the pressure of air or steam, sinks downwards and adapts itself to any mould or receptacle beneath it.