Extraction by Means of Aqueous Solutions.—Many processes have been suggested in which the gold of auriferous deposits is converted into products soluble in water, from which solutions the gold may be precipitated. Of these processes, two only are of special importance, viz. the chlorination or Plattner process, in which the metal is converted into the chloride, and the cyanide or MacArthur-Forrest process, in which it is converted into potassium aurocyanide.

(3) Chlorination or Plattner Process.—In this process moistened gold ores are treated with chlorine gas, the resulting gold chloride dissolved out with water, and the gold precipitated with ferrous sulphate, charcoal, sulphuretted hydrogen or otherwise. The process originated in 1848 with C. F. Plattner, who suggested that the residues from certain mines at Reichenstein, in Silesia, should be treated with chlorine after the arsenical products had been extracted by roasting. It must be noticed, however, that Percy independently made the same discovery, and stated his results at the meeting of the British Association (at Swansea) in 1849, but the Report was not published until 1852. The process was introduced in 1858 by Deetken at Grass Valley, California, where the waste minerals, principally pyrites from tailings, had been worked for a considerable time by amalgamation. The process is rarely applied to ores direct; free-milling ores are generally amalgamated, and the tailings and slimes, after concentration, operated upon. Three stages in the process are to be distinguished: (i) calcination, to convert all the metals, except gold and silver, into oxides, which are unacted upon by chlorine; (ii.) chlorinating the gold and lixiviating the product; (iii.) precipitating the gold.

The calcination, or roasting, is conducted at a low temperature in some form of reverberatory furnace. Salt is added in the roasting to convert any lime, magnesia or lead which may be present, into the corresponding chlorides. The auric chloride is, however, decomposed at the elevated temperature into finely divided metallic gold, which is then readily attacked by the chlorine gas. The high volatility of gold in the presence of certain metals must also be considered. According to Egleston the loss may be from 40 to 90% of the total gold present in cupriferous ores according to the temperature and duration of calcination. The roasted mineral, slightly moistened, is introduced into a vat made of stoneware or pitched planks, and furnished with a double bottom. Chlorine, generally prepared by the interaction of pyrolusite, salt and sulphuric acid, is led from a suitable generator beneath the false bottom, and rises through the moistened ore, which rests on a bed of broken quartz; the gold is thus converted into a soluble chloride, which is afterwards removed by washing with water. Both fixed and rotating vats are employed, the chlorination proceeding more rapidly in the latter case; rotating barrels are sometimes used. There have also been introduced processes in which the chlorine is generated in the chloridizing vat, the reagents used being dilute solutions of bleaching powder and an acid. Munktell’s process is of this type. In the Thies process, used in many districts in the United States, the vats are rotating barrels made, in the later forms, of iron lined with lead, and provided with a filter formed of a finely perforated leaden grating running from one end of the barrel to the other, and rigidly held in place by wooden frames. Chlorine is generated within the barrel from sulphuric acid and chloride of lime. After charging, the barrel is rotated, and when the chlorination is complete the contents are emptied on a filter of quartz or some similar material, and the filtrate led to settling tanks.

After settling the solution is run into the precipitating tanks. The precipitants in use are: ferrous sulphate, charcoal and sulphuretted hydrogen, either alone or mixed with sulphur dioxide; the use of copper and iron sulphides has been suggested, but apparently these substances have achieved no success.

In the case of ferrous sulphate, prepared by dissolving iron in dilute sulphuric acid, the reaction follows the equation AuCl3 + 3FeSO4 = FeCl3 + Fe2(SO4)3 + Au. At the same time any lead, calcium, barium and strontium present are precipitated as sulphates; it is therefore advantageous to remove these metals by the preliminary addition of sulphuric acid, which also serves to keep any basic iron salts in solution. The precipitation is carried out in tanks or vats made with wooden sides and a cement bottom. The solutions are well mixed by stirring with wooden poles, and the gold allowed to settle, the time allowed varying from 12 to 72 hours. The supernatant liquid is led into settling tanks, where a further amount of gold is deposited, and is then filtered through sawdust or sand, the sawdust being afterwards burnt and the gold separated from the ashes and the sand treated in the chloridizing vat. The precipitated gold is washed, treated with salt and sulphuric acid to remove iron salts, roughly dried by pressing in cloths or on filter paper, and then melted with salt, borax and nitre in graphite crucibles. Thus prepared it has a fineness of 800-960, the chief impurities usually being iron and lead.

Charcoal is used as the precipitant at Mount Morgan, Australia. Its use was proposed as early as 1818 and 1819 by Hare and Henry; Percy advocated it in 1869, and Davis adopted it on the large scale at a works in Carolina in 1880. The action is not properly understood; it may be due to the reducing gases (hydrogen, hydrocarbons, &c.) which are invariably present in wood charcoal. The process consists essentially in running the solution over layers of charcoal, the charcoal being afterwards burned. It has been found that the reaction proceeds faster when the solution is heated.

Precipitation with sulphur dioxide and sulphuretted hydrogen proceeds much more rapidly, and has been adopted at many works. Sulphur dioxide, generated by burning sulphur, is forced into the solution under pressure, where it interacts with any free chlorine present to form hydrochloric and sulphuric acids. Sulphuretted hydrogen, obtained by treating iron sulphide or a coarse matte with dilute sulphuric acid, is forced in similarly. The gold is precipitated as the sulphide, together with any arsenic, antimony, copper, silver and lead which may be present. The precipitate is collected in a filter-press, and then roasted in muffle furnaces with nitre, borax and sodium carbonate. The fineness of the gold so obtained is 900 to 950.

4. Cyanide Process.—This process depends upon the solubility of gold in a dilute solution of potassium cyanide in the presence of air (or some other oxidizing agent), and the subsequent precipitation of the gold by metallic zinc or by electrolysis. The solubility of gold in cyanide solutions was known to K. W. Scheele in 1782; and M. Faraday applied it to the preparation of extremely thin films of the metal. L. Eisner recognized, in 1846, the part played by the atmosphere, and in 1879 Dixon showed that bleaching powder, manganese dioxide, and other oxidizing agents, facilitated the solution. S. B. Christy (Trans. A.I.M.E., 1896, vol. 26) has shown that the solution is hastened by many oxidizing agents, especially sodium and manganese dioxides and potassium ferricyanide. According to G. Bodländer (Zeit. f. angew. Chem., 1896, vol. 19) the rate of solution in potassium cyanide depends upon the subdivision of the gold—the finer the subdivision the quicker the solution,—and on the concentration of the solution—the rate increasing until the solution contains 0.25% of cyanide, and remaining fairly stationary with increasing concentration. The action proceeds in two stages; in the first hydrogen peroxide and potassium aurocyanide are formed, and in the second the hydrogen peroxide oxidizes a further quantity of gold and potassium cyanide to aurocyanide, thus (1) 2Au + 4KCN + O2 + 2H2O = 2KAu(CN)2 + 4KOH + H2O2; (2) 2Au + 4KCN + 2H2O2 = 2KAu(CN)2 + 4KOH. The end reaction may be written 4Au + 8KCN + 2H2O + O2 = 4KAu(CN)2 + 4KOH.

The commercial process was patented in 1890 by MacArthur and Forrest, and is now in use all over the world. It is best adapted for free-milling ores, especially after the bulk of the gold has been removed by amalgamation. It has been especially successful in the Transvaal. In the Witwatersrand the ore, which contains about 9 dwts. of gold to the metric ton (2000 ℔), is stamped and amalgamated, and the slimes and tailings, containing about 3½ dwts. per ton, are cyanided, about 2 dwts. more being thus extracted. The total cost per ton of ore treated is about 6s., of which the cyaniding costs from 2s. to 4s.