GUNPOWDER, an explosive composed of saltpetre, charcoal and sulphur. Very few substances have had a greater effect on civilization than gunpowder. Its employment altered the whole art of war, and its influence gradually and indirectly permeated and affected the whole fabric of society. Its direct effect on the arts of peace was but slight, and had but a limited range, which could not be compared to the modern extended employment of high explosives for blasting in mining and engineering work.
It is probably quite incorrect to speak of the discovery of gunpowder. From modern researches it seems more likely and more just to think of it as a thing that has developed, passing through many stages—mainly of improvement, but some undoubtedly retrograde. There really is not sufficient solid evidence on which to pin down its invention to one man. As Lieutenant-Colonel H. W. L. Hime (Gunpowder and Ammunition, 1904) says, the invention of gunpowder was impossible until the properties of nearly pure saltpetre had become known. The honour, however, has been associated with two names in particular, Berthold Schwartz, a German monk, and Friar Roger Bacon. Of the former Oscar Guttmann writes (Monumenta pulveris pyrii, 1904, p. 6): “Berthold Schwartz was generally considered to be the inventor of gunpowder, and only in England has Roger Bacon’s claim been upheld, though there are English writers who have pleaded in favour of Schwartz. Most writers are agreed that Schwartz invented the first firearms, and as nothing was known of an inventor of gunpowder, it was perhaps considered justifiable to give Schwartz the credit thereof. There is some ambiguity as to when Schwartz lived. The year 1354 is sometimes mentioned as the date of his invention of powder, and this is also to be inferred from an inscription on the monument to him in Freiburg. But considering there can be no doubt as to the manufacture in England of gunpowder and cannon in 1344, that we have authentic information of guns in France in 1338 and in Florence in 1326, and that the Oxford MS. De officiis regum of 1325 gives an illustration of a gun, Berthold Schwartz must have lived long before 1354 to have been the inventor of gunpowder or guns.” In Germany also there were powder-works at Augsburg in 1340, in Spandau in 1344, and Liegnitz in 1348.
Roger Bacon, in his De mirabili potestate artis et naturae (1242), makes the most important communication on the history of gunpowder. Reference is made to an explosive mixture as known before his time and employed for “diversion, producing a noise like thunder and flashes like lightning.” In one passage Bacon speaks of saltpetre as a violent explosive, but there is no doubt that he knew it was not a self-explosive substance, but only so when mixed with other substances, as appears from the statement in De secretis operibus artis et naturae, printed at Hamburg in 1618, that “from saltpetre and other ingredients we are able to make a fire that shall burn at any distance we please.” A great part of his three chapters, 9, 10, 11, long appeared without meaning until the anagrammatic nature of the sentences was realized. The words of this anagram are (chap. 11): “Item ponderis totum 30 sed tamen salis petrae luru vopo vir can utri[1] et sulphuris; et sic facies tonitruum et coruscationem, si scias artificium. Videas tamen utrum loquar aenigmate aut secundum veritatem.” Hime, in his chapter on the origin of gunpowder, discusses these chapters at length, and gives, omitting the anagram, the translation: “Let the total weight of the ingredients be 30, however, of saltpetre ... of sulphur; and with such a mixture you will produce a bright flash and a thundering noise, if you know the trick. You may find (by actual experiment) whether I am writing riddles to you or the plain truth.” The anagram reads, according to Hime, “salis petrae r(ecipe) vii part(es), v nov(ellae) corul(i), v et sulphuris” (take seven parts of saltpetre, five of young hazel-wood, and five of sulphur). Hime then goes on to show that Bacon was in possession of an explosive which was a considerable advance on mere incendiary compositions. Bacon does not appear to have been aware of the projecting power of gunpowder. He knew that it exploded and that perhaps people might be blown up or frightened by it; more cannot be said. The behaviour of small quantities of any explosive is hardly ever indicative of its behaviour in large quantities and especially when under confinement. Hime is of opinion that Bacon blundered upon gunpowder whilst playing with some incendiary composition, such as those mentioned by Marcus Graecus and others, in which he employed his comparatively pure saltpetre instead of crude nitrum. It has been suggested that Bacon derived his knowledge of these fiery mixtures from the MS. Liber ignium, ascribed to Marcus Graecus, in the National Library in Paris (Dutens, Enquiry into Origin of Discoveries attributed to Moderns). Certainly this Marcus Graecus appears to have known of some incendiary composition containing the gunpowder ingredients, but it was not gunpowder. Hime seems to doubt the existence of any such person as Marcus Graecus, as he says: “The Liber ignium was written from first to last in the period of literary forgeries and pseudographs ... and we may reasonably conclude that Marcus Graecus is as unreal as the imaginary Greek original of the tract which bears his name.” Albertus Magnus in the De mirabilibus mundi repeats some of the receipts given in Marcus Graecus, and several other writers give receipts for Greek fire, rockets, &c. Dutens gives many passages in his work, above-named, from old authors in support of his view that a composition of the nature of gunpowder was not unknown to the ancients. Hime’s elaborate arguments go to show that these compositions could only have been of the incendiary type and not real explosives. His arguments seem to hold good as regards not only the Greeks but also the Arabs, Hindus and Chinese (see also [Fireworks]).
There seems no doubt that incendiary compositions, some perhaps containing nitre, mostly, however, simply combustible substances as sulphur, naphtha, resins, &c., were employed and projected both for defence and offence, but they were projected or blown by engines and not by themselves. It is quite inconceivable that a real propelling explosive should have been known in the time of Alexander or much later, and not have immediately taken its proper place. In a chapter discussing this question of explosives amongst the Hindus, Hime says: “It is needless to enlarge the list of quotations: incendiaries pursued much the same course in Upper India as in Greece and Arabia.” No trustworthy evidence of an explosive in India is to be found until the 21st of April 1526, the date of the decisive battle of Panipat, in which Ibrahim, sultan of Delhi, was killed and his army routed by Baber the Mogul, who possessed both great and small firearms.
As regards also the crusader period (1097-1291), so strange and deadly an agent of destruction as gunpowder could not possibly have been employed in the field without the full knowledge of both parties, yet no historian, Christian or Moslem, alludes to an explosive of any kind, while all of them carefully record the use of incendiaries. The employment of rockets and “wildfire” incendiary composition seems undoubtedly of very old date in India, but the names given to pieces of artillery under the Mogul conqueror of Hindustan point to a European, or at least to a Turkish origin, and it is quite certain that Europeans were retained in the service of Akbar and Aurangzeb. The composition of present day Chinese gunpowder is almost identical with that employed in Europe, so that in all probability the knowledge of it was obtained from Western sources.
In the writings of Bacon there is no mention of guns or the use of powder as a propellant, but merely as an explosive and destructive power. Owing perhaps to this obscurity hanging over the early history of gunpowder, its employment as a propelling agent has been ascribed to the Moors or Saracens. J. A. Conde (Historia de la dominacion de los Arabes en España) states that Ismail Ben Firaz, king of Granada, who in 1325 besieged Boza, had among his machines “some that cast globes of fire,” but there is not the least evidence that these were guns. The first trustworthy document relative to the use of gunpowder in Europe, a document still in existence, and bearing date February 11, 1326, gives authority to the council of twelve of Florence and others to appoint persons to superintend the manufacture of cannons of brass and iron balls, for the defence of the territory, &c., of the republic. John Barbour, archdeacon of Aberdeen, writing in 1375, states that cannons (crakys of war) were employed in Edward III.’s invasion of Scotland in 1327. An indenture first published by Sir N. H. Nicolas in his History of the Royal Navy (London, 1846), and again by Lieutenant-Colonel H. Brackenbury (Proc. R.A. Inst., 1865), stated to be 1338, contains references to small cannon as among the stores of the Tower, and also mentions “un petit barrell de gonpoudre le quart’ plein.” If authentic, this is possibly the first mention of gunpowder as such in England, but some doubts have been thrown upon the date of this MS. From a contemporary document in the National Library in Paris it seems that in the same year (1338) there existed in the marine arsenal at Rouen an iron weapon called pot de feu, for propelling bolts, together with some saltpetre and sulphur to make powder for the same. Preserved in the Record Office in London are trustworthy accounts from the year 1345 of the purchase of ingredients for making powder, and of the shipping of cannon to France. In 1346 Edward III. appears to have ordered all available saltpetre and sulphur to be bought up for him. In the first year of Richard II. (1377) Thomas Norbury was ordered to buy, amongst other munitions, sulphur, saltpetre and charcoal, to be sent to the castle of Brest. In 1414 Henry V. ordered that no gunpowder should be taken out of the kingdom without special licence, and in the same year ordered twenty pipes of willow charcoal and other articles for the use of the guns.
The manufacture of gunpowder seems to have been carried on as a crown monopoly about the time of Elizabeth, and regulations respecting gunpowder and nitre were made about 1623 (James I.). Powder-mills were probably in existence at Waltham Abbey about the middle or towards the end of the 16th century.
Ingredients and their Action.—Roger Bacon in his anagram gives the first real recipe for gunpowder, viz. (according to Hime, ch. xii.) saltpetre 41.2, charcoal 29.4, sulphur 29.4. Dr John Arderne of Newark, who began to practise about 1350 and was later surgeon to Henry IV., gives a recipe (Sloane MSS. 335, 795), saltpetre 66.6, charcoal 22.2, sulphur 11.1, “which are to be thoroughly mixed on a marble and then sifted through a cloth.” This powder is nominally of the same composition as one given in a MS. of Marcus Graecus, but the saltpetre of this formula by Marcus Graecus was undoubtedly answerable for the difference in behaviour of the two compositions. Roger Bacon had not only refined and obtained pure nitre, but had appreciated the importance of thoroughly mixing the components of the powder. Most if not all the early powder was a “loose” mixture of the three ingredients, and the most important step in connexion with the development of gunpowder was undoubtedly the introduction of wet mixing or “incorporating.” Whenever this was done, the improvement in the product must have been immediately evident. In the damp or wetted state pressure could be applied with comparative safety during the mixing. The loose powder mixture came to be called “serpentine”; after wet mixing it was more or less granulated or corned and was known as “corned” powder. Corned powder seems to have been gradually introduced. It is mentioned in the Fire Book of Conrad von Schöngau (in 1429), and was used for hand-guns in England long before 1560. It would seem that corned powder was used for hand-guns or small arms in the 15th century, but cannon were not made strong enough to withstand its explosion for quite another century (Hime). According to the same writer, in the period 1250-1450, when serpentine only was used, one powder could differ from another in the proportions of the ingredients; in the modern period—say 1700-1886—the powders in use (in each state) differed only as a general rule in the size of the grain, whilst during the transition period—1450-1700—they generally differed both in composition and size of grain.
Corned or grained powder was adopted in France in 1525, and in 1540 the French utilized an observation that large-grained powder was the best for cannon, and restricted the manufacture to three sizes of grain or corn, possibly of the same composition. Early in the 18th century two or three sizes of grain and powder of one composition appear to have become common. The composition of English powder seems to have settled down to 75 nitre, 15 charcoal, and 10 sulphur, somewhere about the middle of the 18th century.