x′ = ax + by,
y′ = cx + dy,
where a, b, c, d are integers such that ad − bc = 1. To every operation of this group there corresponds an operation of the set defined by
| z′ = | az + b | , |
| cz + d |
in such a way that to the product of two operations of the group there corresponds the product of the two analogous operations of the set. The operations of the set (iv.), where ad − bc = 1, therefore constitute a group which is isomorphic with the previous group. The isomorphism is multiple, since to a single operation of the second set there correspond the two operations of the first for which a, b, c, d and −a, −b, −c, −d are parameters. These two groups, which are of fundamental importance in the theory of quadratic forms and in the theory of modular functions, have been the object of very many investigations.
Another large class of discontinuous groups, which have far-reaching applications in analysis, are those which arise in the first instance from purely geometrical considerations. By the combination and repetition of a finite number of geometrical Discontinuous groups arising from geometrical operations. operations such as displacements, projective transformations, inversions, &c., a discontinuous group of such operations will arise. Such a group, as regards the points of the plane (or of space), will in general be improperly discontinuous; but when the generating operations are suitably chosen, the group may be properly discontinuous. In the latter case the group may be represented in a graphical form by the division of the plane (or space) into regions such that no point of one region can be transformed into another point of the same region by any operation of the group, while any given region can be transformed into any other by a suitable transformation. Thus, let ABC be a triangle bounded by three circular arcs BC, CA, AB; and consider the figure produced from ABC by inversions in the three circles of which BC, CA, AB are part. By inversion at BC, ABC becomes an equiangular triangle A′BC. An inversion in AB changes ABC and A′BC into equiangular triangles ABC′ and A″BC′. Successive inversions at AB and BC then will change ABC into a series of equiangular triangles with B for a common vertex. These will not overlap and will just fill in the space round B if the angle ABC is a submultiple of two right angles. If then the angles of ABC are submultiples of two right angles (or zero), the triangles formed by any number of inversions will never overlap, and to each operation consisting of a definite series of inversions at BC, CA and AB will correspond a distinct triangle into which ABC is changed by the operation. The network of triangles so formed gives a graphical representation of the group that arises from the three inversions in BC, CA, AB. The triangles may be divided into two sets, those, namely, like A″BC′, which are derived from ABC by an even number of inversions, and those like A′BC or ABC′ produced by an odd number. Each set are interchanged among themselves by any even number of inversions. Hence the operations consisting of an even number of inversions form a group by themselves. For this group the quadrilateral formed by ABC and A′BC constitutes a region, which is changed by every operation of the group into a distinct region (formed of two adjacent triangles), and these regions clearly do not overlap. Their distribution presents in a graphical form the group that arises by pairs of inversions at BC, CA, AB; and this group is generated by the operation which consists of successive inversions at AB, BC and that which consists of successive inversions at BC, CA. The group defined thus geometrically may be presented in many analytical forms. If x, y and x′, y′ are the rectangular co-ordinates of two points which are inverse to each other with respect to a given circle, x′ and y′ are rational functions of x and y, and conversely. Thus the group may be presented in a form in which each operation gives a birational transformation of two variables. If x + iy = z, x′ + iy′ = z′, and if x′, y′ is the point to which x, y is transformed by any even number of inversions, then z′ and z are connected by a linear relation z′ = (αz + β) / (γz + δ), where α, β, γ, δ are constants (in general complex) depending on the circles at which the inversions are taken. Hence the group may be presented in the form of a group of linear transformations of a single variable generated by the two linear transformations z′ = (α1z + β1) / (γ1z + δ1), z′ = (α2z + β2) / (γ2z + δ2), which correspond to pairs of inversions at AB, BC and BC, CA respectively. In particular, if the sides of the triangle are taken to be x = 0, x2 + y2 − 1 = 0, x2 + y2 + 2x = 0, the generating operations are found to be z′ = z + 1, z′ = −z−1; and the group is that consisting of all transformations of the form z′ = (az + b) / (cz + d), where ad − bc = 1, a, b, c, d being integers. This is the group already mentioned which underlies the theory of the elliptic modular functions; a modular function being a function of z which is invariant for some subgroup of finite index of the group in question.
The triangle ABC from which the above geometrical construction started may be replaced by a polygon whose sides are circles. If each angle is a submultiple of two right angles or zero, the construction is still effective to give a set of non-overlapping regions, which represent graphically the group which arises from pairs of inversions in the sides of the polygon. In their analytical form, as groups of linear transformations of a single variable, the groups are those on which the theory of automorphic functions depends. A similar construction in space, the polygons bounded by circular arcs being replaced by polyhedra bounded by spherical faces, has been used by F. Klein and Fricke to give a geometrical representation for groups which are improperly discontinuous when represented as groups of the plane.
The special classes of discontinuous groups that have been dealt with Group of a linear differential equation. in the previous paragraphs arise directly from geometrical considerations. As a final example we shall refer briefly to a class of groups whose origin is essentially analytical. Let
| dny | + P1 | dn−1y | + ... + Pn−1 | dy | + Pny = 0 |
| dxn | dxn−1 | dx |
be a linear differential equation, the coefficients in which are rational functions of x, and let y1, y2, ..., yn be a linearly independent set of integrals of the equation. In the neighbourhood of a finite value x0 of x, which is not a singularity of any of the coefficients in the equation, these integrals are ordinary power-series in x − x0. If the analytical continuations of y1, y2, ..., yn be formed for any closed path starting from and returning to x0, the final values arrived at when x0 is again reached will be another set of linearly independent integrals. When the closed path contains no singular point of the coefficients of the differential equation, the new set of integrals is identical with the original set. If, however, the closed path encloses one or more singular points, this will not in general be the case. Let y′1, y′2, ..., y′n be the new integrals arrived at. Since in the neighbourhood of x0 every integral can be represented linearly in terms of y1, y2, ..., yn, there must be a system of equations
| y′1 = a11y1 + a12y2 + ... + a1nyn, y′2 = a21y1 + a22y2 + ... + a2nyn, · · · · y′n = an1y1 + an2y2 + ... + annyn, |