(−An2 + Kn + 2Ta) θk − Ta (αk+1 + αk) = 0,
(8)
Mn2xk + T (αk+1 − αk) = 0,
(9)
xk+1 − xk − a (θk+1 + θk) − 2lak = 0,
(10)
and the rest of the solution proceeds as before in § 14, putting
xk, θk, αk = (L, P, Q) exp cki.
(11)
(−An2 + Kn + 2Ta) θk − Ta (αk+1 + αk) = 0,
(8)
Mn2xk + T (αk+1 − αk) = 0,
(9)
xk+1 − xk − a (θk+1 + θk) − 2lak = 0,
(10)
and the rest of the solution proceeds as before in § 14, putting
xk, θk, αk = (L, P, Q) exp cki.
(11)