Lastly, as an application of gyroscopic theory, a stretched chain of fly-wheels in rotation was employed by Kelvin as a mechanical model of the rotary polarization of light in an electromagnetic field; the apparatus may be constructed of bicycle wheels connected by short links, and suspended vertically.

Theory of the Symmetrical Top.

1. The physical constants of a given symmetrical top, expressed in C.G.S. units, which are employed in the subsequent formulae, are denoted by M, h, C and A. M is the weight in grammes (g) as given by the number of gramme weights which equilibrate the top when weighed in a balance; h is the distance OG in centimetres (cm.) between G the centre of gravity and O the point of support, and Mh may be called the preponderance in g.-cm.; Mh and M can be measured by a spring balance holding up in a horizontal position the axis OC in fig. 8 suspended at O. Then gMh (dyne-cm. or ergs) is the moment of gravity about O when the axis OG is horizontal, gMh sin θ being the moment when the axis OG makes an angle θ with the vertical, and g = 981 (cm./s2) on the average; C is the moment of inertia of the top about OG, and A about any axis through O at right angles to OG, both measured in g-cm.2.

To measure A experimentally, swing the top freely about O in small plane oscillation, and determine the length, l cm., of the equivalent simple pendulum; then

l = A/Mh, A = Mhl.

(1)

Next make the top, or this simple pendulum, perform small conical revolutions, nearly coincident with the downward vertical position of equilibrium, and measure n, the mean angular velocity of the conical pendulum in radians / second; and T its period in seconds; then

4π2/T2 = n2 = g/l = gMh/A;

(2)

and f = n/2π is the number of revolutions per second, called the frequency, T = 2π/n is the period of a revolution, in seconds.