| = 2n2 (E − z) (1 − z2) − (G′ − Gz)2 /A2 = 2n2 (D − z) (1 − z2) − (G − G′z)2 /A2 = 2n2 Z suppose. |
Denoting the roots of Z = 0 by z1, z2, z3, we shall have them arranged in the order
z1 > 1 > z2 > z > z3 > −1.
(14)
(dz/dt)2 = 2n2 (z1 − z) (z2 − z) (z − z3).
(15)
nt = ∫ zz3 dz/ √(2Z),
(16)
an elliptic integral of the first kind, which with
| m = n √ | z1 − z3 | , κ2 = | z2 − z3 | , |
| 2 | z1 − z2 |