The Jacobian elliptic parameter of the third elliptic integral in (7) can be given by ν, where

v = ∫ z3E √ (z3 − z1)dz = ∫ z3z2 + ∫ z2E = K + (1 − f) Ki′,
√ (4Z)

(9)

where f is a real fraction,

(1 − f) K′ = ∫ z2E √ (z3 − z1)dz,
√ (−4Z)

(10)

fK′ = ∫ Ez1 √ (z3 − z1)dz,
√ (−4Z)
= sn−1 √ E − z1= cn−1 √ z2 − E= dn−1 √ z3 − E,
z2 − z1 z2 − z1z3 − z1

(11)

with respect to the comodulus κ′.