(18)

By choosing for f a simple rational fraction, such as ½, 1⁄3, ¼, 1⁄5, ... an algebraical case of motion can be constructed (Annals of Mathematics, 1904).

Thus with G′ − GE = 0, we have E = z1 or z2, never z3; f = 0 or 1; and P is at A or B on the focal ellipse; and then

ῶ = −pt, p = G/2A,

(19)

ψ + pt = tan−1 n√ (2Z),
2p (z − E)

(20)

sin θ exp (ψ + pt) i = i√ [(−z2 − z3) (z − z1)] + √ [(z3 − z) (z − z2)],

z1 = 1 + z2 z3, √ −z2 − z3= G= p= G′, or
z2 + z3 22An n2Anz1

(21)