(20)

−zY = A dp− Apq cot θ + qh3,
dt

(21)

−zX − xZ = A dq+ Ap2 cot θ − ph3,
dt
xY = dh3= C dr= −Cq d.
dt dt

(23)

Eliminating Y between (19) and (23),

( C+ x2 ) dr− xz dp+ pqx (x + z cot θ − ρ sin θ) − qrxρ cos θ = 0,
M dtdt

(24)

( C+ x2 ) dr− xz dp− px (x + z cot θ − ρ sin θ) + rxρ cos θ = 0.
M