(6)
They found that the cooling effect of convection, unlike that of radiation, was independent of the nature of the surface of the thermometer, whether silvered or blackened, that it varied as some power c of the pressure p, and that it was independent of the absolute temperature of the enclosure, but varied as the excess temperature (t − t0) raised to the power 1.233. This highly artificial result undoubtedly contains some elements of truth, but could only be applied to experiments similar to those from which it was derived. F. Hervé de la Provostaye and P. Q. Desains (Ann. Chim. Phys., 1846, 16, p. 337), in repeating these experiments under various conditions, found that the coefficients A and B were to some extent dependent on the temperature, and that the manner in which the cooling effect varied with the pressure depended on the form and size of the enclosure. It is evident that this should be the case, since the cooling effect of the gas depends partly on convective currents. which are necessarily greatly modified by the form of the enclosure in a manner which it would appear hopeless to attempt to represent by any general formula.
28. Surface Emissivity.—The same remark applies to many attempts which have since been made to determine the general value of the constant termed by Fourier and early writers the “exterior conductibility,” but now called the surface emissivity. This coefficient represents the rate of loss of heat from a body per unit area of surface per degree excess of temperature, and includes the effects of radiation, convection and conduction. As already pointed out, the combined effect will be nearly proportional to the excess of temperature in any given case provided that the excess is small, but it is not necessarily proportional to the extent of surface exposed except in the case of pure radiation. The rate of loss by convection and conduction varies greatly with the form of the surface, and, unless the enclosure is very large compared with the cooling body, the effect depends also on the size and form of the enclosure. Heat is necessarily communicated from the cooling body to the layer of gas in contact with it by conduction. If the linear dimensions of the body are small, as in the case of a fine wire, or if it is separated from the enclosure by a thin layer of gas, the rate of loss depends chiefly on conduction. For very fine metallic wires heated by an electric current, W. E. Ayrton and H. Kilgour (Phil. Trans., 1892) showed that the rate of loss is nearly independent of the surface, instead of being directly proportional to it. This should be the case, as Porter has shown (Phil. Mag., March 1895), since the effect depends mainly on conduction. The effects of conduction and radiation may be approximately estimated if the conductivity of the gas and the nature and forms of the surfaces of the body and enclosure are known, but the effect of convection in any case can be determined only by experiment. It has been found that the rate of cooling by a current of air is approximately proportional to the velocity of the current, other things being equal. It is obvious that this should be the case, but the result cannot generally be applied to convection currents. Values which are commonly given for the surface emissivity must therefore be accepted with great reserve. They can be regarded only as approximate, and as applicable only to cases precisely similar to those for which they were experimentally obtained. There cannot be said to be any general law of convection. The loss of heat is not necessarily proportional to the area of the surface, and no general value of the coefficient can be given to suit all cases. The laws of conduction and radiation admit of being more precisely formulated, and their effects predicted, except in so far as they are complicated by convection.
29. Conduction of Heat.—The laws of transference of heat in the interior of a solid body formed one of the earliest subjects of mathematical and experimental treatment in the theory of heat. The law assumed by Fourier was of the simplest possible type, but the mathematical application, except in the simplest cases, was so difficult as to require the development of a new mathematical method. Fourier succeeded in showing how, by his method of analysis, the solution of any given problem with regard to the flow of heat by conduction in any material could be obtained in terms of a physical constant, the thermal conductivity of the material, and that the results obtained by experiment agreed in a qualitative manner with those predicted by his theory. But the experimental determination of the actual values of these constants presented formidable difficulties which were not surmounted till a later date. The experimental methods and difficulties are discussed in a special article on [Conduction of Heat]. It will suffice here to give a brief historical sketch, including a few of the more important results by way of illustration.
30. Comparison of Conducting Powers.—That the power of transmitting heat by conduction varied widely in different materials was probably known in a general way from prehistoric times. Empirical knowledge of this kind is shown in the construction of many articles for heating, cooking, &c., such as the copper soldering bolt, or the Norwegian cooking-stove. One of the earliest experiments for making an actual comparison of conducting powers was that suggested by Franklin, but carried out by Jan Ingenhousz (Journ. de phys., 1789, 34, pp. 68 and 380). Exactly similar bars of different materials, glass, wood, metal, &c., thinly coated with wax, were fixed in the side of a trough of boiling water so as to project for equal distances through the side of the trough into the external air. The wax coating was observed to melt as the heat travelled along the bars, the distance from the trough to which the wax was melted along each affording an approximate indication of the distribution of temperature. When the temperature of each bar had become stationary the heat which it gained by conduction from the trough must be equal to the heat lost to the surrounding air, and must therefore be approximately proportional to the distance to which the wax had melted along the bar. But the temperature fall per unit length, or the temperature-gradient, in each bar at the point where it emerged from the trough would be inversely proportional to the same distance. For equal temperature-gradients the quantities of heat conducted (or the relative conducting powers of the bars) would therefore be proportional to the squares of the distances to which the wax finally melted on each bar. This was shown by Fourier and Despretz (Ann. chim. phys., 1822, 19, p. 97).
31. Diffusion of Temperature.—It was shown in connexion with this experiment by Sir H. Davy, and the experiment was later popularized by John Tyndall, that the rate at which wax melted along the bar, or the rate of propagation of a given temperature, during the first moments of heating, as distinguished from the melting-distance finally attained, depended on the specific heat as well as the conductivity. Short prisms of iron and bismuth coated with wax were placed on a hot metal plate. The wax was observed to melt first on the bismuth, although its conductivity is less than that of iron. The reason is that its specific heat is less than that of iron in the proportion of 3 to 11. The densities of iron and bismuth being 7.8 and 9.8, the thermal capacities of equal prisms will be in the ratio .86 for iron to .29 for bismuth. If the prisms receive heat at equal rates, the bismuth will reach the temperature of melting wax nearly three times as quickly as the iron. It is often stated on the strength of this experiment that the rate of propagation of a temperature wave, which depends on the ratio of the conductivity to the specific heat per unit volume, is greater in bismuth than in iron (e.g. Preston, Heat, p. 628). This is quite incorrect, because the conductivity of iron is about six times that of bismuth, and the rate of propagation of a temperature wave is therefore twice as great in iron as in bismuth. The experiment in reality is misleading because the rates of reception of heat by the prisms are limited by the very imperfect contact with the hot metal plate, and are not proportional to the respective conductivities. If the iron and bismuth bars are properly faced and soldered to the top of a copper box (in order to ensure good metallic contact, and exclude a non-conducting film of air), and the box is then heated by steam, the rates of reception of heat will be nearly proportional to the conductivities, and the wax will melt nearly twice as fast along the iron as along the bismuth. A bar of lead similarly treated will show a faster rate of propagation than iron, because, although its conductivity is only half that of iron, its specific heat per unit volume is 2.5 times smaller.
32. Bad Conductors. Liquids and Gases.—Count Rumford (1792) compared the conducting powers of substances used in clothing, such as wool and cotton, fur and down, by observing the time which a thermometer took to cool when embedded in a globe filled successively with the different materials. The times of cooling observed for a given range varied from 1300 to 900 seconds for different materials. The low conducting power of such materials is principally due to the presence of air in the interstices, which is prevented from forming convection currents by the presence of the fibrous material. Finely powdered silica is a very bad conductor, but in the compact form of rock crystal it is as good a conductor as some of the metals. According to the kinetic theory of gases, the conductivity of a gas depends on molecular diffusion. Maxwell estimated the conductivity of air at ordinary temperatures at about 20,000 times less than that of copper. This has been verified experimentally by Kundt and Warburg, Stefan and Winkelmann, by taking special precautions to eliminate the effects of convection currents and radiation. It was for some time doubted whether a gas possessed any true conductivity for heat. The experiment of T. Andrews, repeated by Grove, and Magnus, showing that a wire heated by an electric current was raised to a higher temperature in air than in hydrogen, was explained by Tyndall as being due to the greater mobility of hydrogen which gave rise to stronger convection currents. In reality the effect is due chiefly to the greater velocity of motion of the ultimate molecules of hydrogen, and is most marked if molar (as opposed to molecular) convection is eliminated. Molecular convection or diffusion, which cannot be distinguished experimentally from conduction, as it follows the same law, is also the main cause of conduction of heat in liquids. Both in liquids and gases the effects of convection currents are so much greater than those of diffusion or conduction that the latter are very difficult to measure, and, except in special cases, comparatively unimportant as affecting the transference of heat. Owing to the difficulty of eliminating the effects of radiation and convection, the results obtained for the conductivities of liquids are somewhat discordant, and there is in most cases great uncertainty whether the conductivity increases or diminishes with rise of temperature. It would appear, however, that liquids, such as water and glycerin, differ remarkably little in conductivity in spite of enormous differences of viscosity. The viscosity of a liquid diminishes very rapidly with rise of temperature, without any marked change in the conductivity, whereas the viscosity of a gas increases with rise of temperature, and is always nearly proportional to the conductivity.
33. Difficulty of Quantitative Estimation of Heat Transmitted.—The conducting powers of different metals were compared by C. M. Despretz, and later by G. H. Wiedemann and R. Franz, employing an extension of the method of Jan Ingenhousz, in which the temperatures at different points along a bar heated at one end were measured by thermometers or thermocouples let into small holes in the bars, instead of being measured at one point only by means of melting wax. These experiments undoubtedly gave fairly accurate relative values, but did not permit the calculation of the absolute amounts of heat transmitted. This was first obtained by J. D. Forbes (Brit. Assoc. Rep., 1852; Trans. Roy. Soc. Ed., 1862, 23, p. 133) by deducing the amount of heat lost to the surrounding air from a separate experiment in which the rate of cooling of the bar was observed (see [Conduction of Heat]). Clément (Ann. chim. phys., 1841) had previously attempted to determine the conductivities of metals by observing the amount of heat transmitted by a plate with one side exposed to steam at 100° C., and the other side cooled by water at 28° C. Employing a copper plate 3 mm. thick, and assuming that the two surfaces of the plate were at the same temperatures as the water and the steam to which they were exposed, or that the temperature-gradient in the metal was 72° in 3 mm., he had thus obtained a value which we now know to be nearly 200 times too small. The actual temperature difference in the metal itself was really about 0.36° C. The remainder of the 72° drop was in the badly conducting films of water and steam close to the metal surface. Similarly in a boiler plate in contact with flame at 1500° C. on one side and water at, say, 150° C. on the other, the actual difference of temperature in the metal, even if it is an inch thick, is only a few degrees. The metal, unless badly furred with incrustation, is but little hotter than the water. It is immaterial so far as the transmission of heat is concerned, whether the plates are iron or copper. The greater part of the resistance to the passage of heat resides in a comparatively quiescent film of gas close to the surface, through which film the heat has to pass mainly by conduction. If a Bunsen flame, preferably coloured with sodium, is observed impinging on a cold metal plate, it will be seen to be separated from the plate by a dark space of a millimetre or less, throughout which the temperature of the gas is lowered by its own conductivity below the temperature of incandescence. There is no abrupt change of temperature in passing from the gas to the metal, but a continuous temperature-gradient from the temperature of the metal to that of the flame. It is true that this gradient may be upwards of 1000° C. per mm., but there is no discontinuity.
34. Resistance of a Gas Film to the Passage of Heat.—It is possible to make a rough estimate of the resistance of such a film to the passage of heat through it. Taking the average conductivity of the gas in the film as 10,000 times less than that of copper (about double the conductivity of air at ordinary temperatures) a millimetre film would be equivalent to a thickness of 10 metres of copper, or about 1.2 metres of iron. Taking the temperature-gradient as 1000° C. per mm. such a film would transmit 1 gramme-calorie per sq. cm. per sec., or 36,000 kilo-calories per sq. metre per hour. With an area of 100 sq. cms. the heat transmitted at this rate would raise a litre of water from 20° C. to 100° C. in 800 secs. By experiment with a strong Bunsen flame it takes from 8 to 10 minutes to do this, which would indicate that on the above assumptions the equivalent thickness of quiescent film should be rather less than 1 mm. in this case. The thickness of the film diminishes with the velocity of the burning gases impinging on the surface. This accounts for the rapidity of heating by a blowpipe flame, which is not due to any great increase in temperature of the flame as compared with a Bunsen. Similarly the efficiency of a boiler is but slightly reduced if half the tubes are stopped up, because the increase of draught through the remainder compensates partly for the diminished heating surface. Some resistance to the passage of heat into a boiler is also due to the water film on the inside. But this is of less account, because the conductivity of water is much greater than that of air, and because the film is continually broken up by the formation of steam, which abstracts heat very rapidly.
35. Heating by Condensation of Steam.—It is often stated that the rate at which steam will condense on a metal surface at a temperature below that corresponding to the saturation pressure of the steam is practically infinite (e.g. Osborne Reynolds, Proc. Roy. Soc. Ed., 1873, p. 275), and conversely that the rate at which water will abstract heat from a metal surface by the formation of steam (if the metal is above the temperature of saturation of the steam) is limited only by the rate at which the metal can supply heat by conduction to its surface layer. The rate at which heat can be supplied by condensation of steam appears to be much greater than that at which heat can be supplied by a flame under ordinary conditions, but there is no reason to suppose that it is infinite, or that any discontinuity exists. Experiments by H. L. Callendar and J. T. Nicolson by three independent methods (Proc. Inst. Civ. Eng., 1898, 131, p. 147; Brit. Assoc. Rep. p. 418) appear to show that the rate of abstraction of heat by evaporation, or that of communication of heat by condensation, depends chiefly on the difference of temperature between the metal surface and the saturated steam, and is nearly proportional to the temperature difference (not to the pressure difference, as suggested by Reynolds) for such ranges of pressure as are common in practice. The rate of heat transmission they observed was equivalent to about 8 calories per sq. cm. per sec., for a difference of 20° C. between the temperature of the metal surface and the saturation temperature of the steam. This would correspond to a condensation of 530 kilogrammes of steam at 100° C. per sq. metre per hour, or 109 ℔ per sq. ft. per hour for the same difference of temperature, values which are many times greater than those actually obtained in ordinary surface condensers. The reason for this is that there is generally some air mixed with the steam in a surface condenser, which greatly retards the condensation. It is also difficult to keep the temperature of the metal as much as 20° C. below the temperature of the steam unless a very free and copious circulation of cold water is available. For the same difference of temperature, steam can supply heat by condensation about a thousand times faster than hot air. This rate is not often approached in practice, but the facility of generation and transmission of steam, combined with its high latent heat and the accuracy of control and regulation of temperature afforded, render it one of the most convenient agents for the distribution of large quantities of heat in all kinds of manufacturing processes.