[3] For instance a mass of compressed air, if allowed to expand in a cylinder at the ordinary temperature, will do work, and will at the same time absorb a quantity of heat which, as we now know, is the thermal equivalent of the work done. But this work cannot be said to have been produced solely from the heat absorbed in the process, because the air at the end of the process is in a changed condition, and could not be restored to its original state at the same temperature without having work done upon it precisely equal to that obtained by its expansion. The process could not be repeated indefinitely without a continual supply of compressed air. The source of the work in this case is work previously done in compressing the air, and no part of the work is really generated at the expense of heat alone, unless the compression is effected at a lower temperature than the expansion.

[4] Clausius (Pogg. Ann. 79, p. 369) and others have misinterpreted this assumption, and have taken it to mean that the quantity of heat required to produce any given change of state is independent of the manner in which the change is effected, which Carnot does not here assume.

[5] Carnot’s description of his cycle and statement of his principle have been given as nearly as possible in his own words, because some injustice has been done him by erroneous descriptions and statements.

[6] It was for this reason that Professor W. Thomson (Lord Kelvin) stated (Phil. Mag., 1852, 4) that “Carnot’s original demonstration utterly fails,” and that he introduced the “corrections” attributed to James Thomson and Clerk Maxwell respectively. In reality Carnot’s original demonstration requires no correction.

[7] In reference to this objection, Tyndall remarks (Phil. Mag., 1862, p. 422; Heat, p. 385); “In the first place the plate of salt nearest the source of heat is never moistened, unless the experiments are of the roughest character. Its proximity to the source enables the heat to chase away every trace of humidity from its surface.” He therefore took precautions to dry only the circumferential portions of the plate nearest the pile, assuming that the flux of heat through the central portions would suffice to keep them dry. This reasoning is not at all satisfactory, because rocksalt is very hygroscopic and becomes wet, even in unsaturated air, if the vapour pressure is greater than that of a saturated solution of salt at the temperature of the plate. Assuming that the vapour pressure of the saturated salt solution is only half that of pure water, it would require an elevation of temperature of 10° C. to dry the rocksalt plates in saturated air at 15° C. It is only fair to say that the laws of the vapour pressures of solutions were unknown in Tyndall’s time, and that it was usual to assume that the plates would not become wetted until the dew-point was reached. The writer has repeated Tyndall’s experiments with a facsimile of one of Tyndall’s tubes in the possession of the Royal College of Science, fitted with plates of rocksalt cut from the same block as Tyndall’s, and therefore of the same hygroscopic quality. Employing a reflecting galvanometer in conjunction with a differential bolometer, which is quicker in its action than Tyndall’s pile, there appears to be hardly any difference between dry and moist air, provided that the latter is not more than half saturated. Using saturated air with a Leslie cube as source of heat, both rocksalt plates invariably become wet in a minute or two and the absorption rises to 10 or 20% according to the thickness of the film of deposited moisture. Employing the open tube method as described by Tyndall, without the rocksalt plates, the absorption is certainly less than 1% in 3 ft. of air saturated at 20° C., unless condensation is induced on the walls of the tube. It is possible that the walls of Tyndall’s tube may have become covered with a very hygroscopic film from the powder of the calcium chloride which he was in the habit of introducing near one end. Such a film would be exceedingly difficult to remove, and would account for the excessive precautions which he found necessary in drying the air in order to obtain the same transmitting power as a vacuum. It is probable that Tyndall’s experiments on aqueous vapour were effected by experimental errors of this character.


HEATH, BENJAMIN (1704-1766), English classical scholar and bibliophile, was born at Exeter on the 20th of April 1704. He was the son of a wealthy merchant, and was thus able to devote himself mainly to travel and book-collecting. He became town clerk of his native city in 1752, and held the office till his death on the 13th of September 1766. In 1763 he had published a pamphlet advocating the repeal of the cider tax in Devonshire, and his endeavours led to success three years later. As a classical scholar he made his reputation by his critical and metrical notes on the Greek tragedians, which procured him an honorary D.C.L. from Oxford (31st of March 1752). He also left MS. notes on Burmann’s and Martyn’s editions of Virgil, on Euripides, Catullus, Tibullus, and the greater part of Hesiod. In some of these he adopts the whimsical name Dexiades Ericius. His Revisal of Shakespear’s Text (1765) was an answer to the “insolent dogmatism” of Bishop Warburton. The Essay towards a Demonstrative Proof of the Divine Existence, Unity and Attributes (1740) was intended to combat the opinions of Voltaire, Rousseau and Hume. Two of his sons (among a family of thirteen) were Benjamin, headmaster of Harrow (1771-1785), and George, headmaster of Eton (1796). His collection of rare classical works formed the nucleus of his son Benjamin’s famous library (Bibliotheca Heathiana).

An account of the Heath family will be found in Sir W. R. Drake’s Heathiana (1882).


HEATH, NICHOLAS (c. 1501-1578), archbishop of York and lord chancellor, was born in London about 1501 and graduated B.A. at Oxford in 1519. He then migrated to Christ’s College, Cambridge, where he graduated B.A. in 1520, M.A. in 1522, and was elected fellow in 1524. After holding minor preferments he was appointed archdeacon of Stafford in 1534 and graduated D.D. in 1535. He then accompanied Edward Fox (q.v.), bishop of Hereford, on his mission to promote a theological and political understanding with the Lutheran princes of Germany. His selection for this duty implies a readiness on Heath’s part to proceed some distance along the path of reform; but his dealings with the Lutherans did not confirm this tendency, and Heath’s subsequent career was closely associated with the cause of reaction. In 1539, the year of the Six Articles, he was made bishop of Rochester, and in 1543 he succeeded Latimer at Worcester. His Catholicism, however, was of a less rigid type than Gardiner’s and Bonner’s; he felt something of the force of the national antipathy to foreign influence, whether ecclesiastical or secular, and was always impressed by the necessity of national unity, so far as was possible, in matters of faith. Apparently he made no difficulty about carrying out the earlier reforms of Edward VI., and he accepted the first book of common prayer after it had been modified by the House of Lords in a Catholic direction.