From Miall and Denny, The Cockroach, Lovell Reeve & Co.
Fig. 14.—Hinder Abdominal Segment and Ovipositor of FemaleCockroach. Magnified.

T8 &c. Tergites.

S7, 7th Sternite.

S8, Sclerite between 7th and 8th sterna.

S9, 8th Sclerite.

Od, Vagina.

sp, Spermatheca.

G, Anterior, and g, posterior gonapophyses.

The paired testes of the male consist of a variable number of seminal tubes, those of each testis opening into a vas deferens. In some bristle-tails and may-flies, the two vasa deferentia open separately, but usually they lead into a sperm-reservoir, whence issues a median ejaculatory duet. The male opening is on the ninth abdominal segment, to which belong the processes that form the claspers or genital armature. Accessory glands are commonly present in connexion both with the male and the female reproductive organs. The poison-glands of the sting in wasps and bees are well-known examples of these.

Embryology

The Egg.—Among the Hexapoda, as in Arthropods generally, the egg is large, containing an accumulation of yolk for the nourishment of the growing embryo. Most insect eggs are of an elongate oval shape; some are globular, others flattened, while others again are flask-shaped, and the outer envelope (chorion) is often beautifully sculptured (figs. 20, d; 21, a, b). Various devices are adopted for the protection of the eggs from mechanical injury or from the attacks of enemies, and for fixing them in appropriate situations. For example, the egg may be raised above the surface on which it is laid by an elongate stalk; the eggs may be protected by a secretion, which in some cases forms a hard protective capsule or “purse”; or they may be covered with shed hairs of the mother, while among water-insects a gelatinous envelope, often of rope-like form, is common. In various groups of the Hexapoda—aphids and some flesh-flies (Sarcophaga), for example—the egg undergoes development within the body of the mother, and the young insect is born in an active state; such insects are said to be “viviparous.”

Parthenogenesis.—A number of cases are known among the Hexapoda of the development of young from the eggs of virgin females. In insects so widely separated as bristle-tails and moths this occurs occasionally. In certain gall-flies (Cynipidae) no males are known to exist at all, and the species seems to be preserved entirely by successive parthenogenetic generations. In other gall-flies and in aphids we find that a sexual generation alternates with one or with many virgin generations. The offspring of the virgin females are in most of these instances females; but among the bees and wasps parthenogenesis occurs normally and always results in the development of males, the “queen” insect laying either a fertilized or unfertilized egg at will.

Maturation, Fertilization and Segmentation.—Polar bodies were first observed in the eggs of Hexapoda by F. Blochmann in 1887. The two nuclei are successively divided from the egg nucleus in the usual way, but they frequently become absorbed in the peripheral protoplasm instead of being extruded from the egg-cell altogether. It appears that in parthenogenetic eggs two polar nuclei are formed. According to A. Petrunkevich (1901-1903), the second polar nucleus uniting with one daughter-nucleus of the first polar body gives rise to the germ-cells of the parthenogenetically-produced male. There is no reunion of the second polar nucleus with the female pronucleus, but, according to the recent work of L. Doncaster (1906-1907) on the eggs of sawflies, the number of chromosomes is not reduced in parthenogenetic egg-nuclei, while, in eggs capable of fertilization, the usual reduction-divisions occur. Fertilization takes place as the egg is laid, the spermatozoa being ejected from the spermatheca of the female and making their way to the protoplasm of the egg through openings (micropyles) in its firm envelope. The segmentation of the fertilized nucleus results in the formation of a number of nuclei which arrange themselves around the periphery of the egg and, the protoplasm surrounding them becoming constricted, a blastoderm or layer of cells, enclosing the central yolk, is formed. Within the yolk the nuclei of some “yolk cells” can be distinguished.

From Nussbaum in Miall and Denny’s, The Cockroach, Lovell, Reeve & Co.
Fig. 15.—Diagram showing Formation of Germinal Layers. E, ectoderm; M, inner layer. Magnified.

Germinal Layers and Food-Canal.—The embryo begins to develop as an elongate, thickened, ventral region of the blastoderm which is known as the ventral plate or germ band. Along this band a median furrow appears, and a mass of cells sinks within, the one-layered germ band thus becoming transformed into a band of two cell-layers (fig. 15). In some cases the inner layer is formed not by invagination but by proliferation or by delamination. The outer of these two layers (fig. 15, E) is the ectoderm. With regard to the inner layer (endoblast of some authors, fig. 15, M) much difference of opinion has prevailed. It has usually been regarded as representing both endoderm and mesoderm, and the groove which usually leads to its formation has been compared to the abnormally elongated blastopore of a typical gastrula. No doubt can be entertained that the greater part of the inner layer corresponds to the mesoderm of more ordinary embryos, for the coelomic pouches, the germ-cells, the musculature and the vascular system all arise from it. Further, there is general agreement that the chitin-lined fore-gut and hind-gut, which form the greater part of the digestive tract, arise from ectodermal invaginations (stomodaeum and proctodaeum respectively) at the positions of the future mouth and anus. The origin of the mid-gut (mesenteron), that has no chitinous lining in the developed insect, is the disputed point. According to the classical researches of A. Kowalevsky (1871 and 1887) on the embryology of the water-beetle Hydrophilus and of the muscid flies, an anterior and a posterior endoderm-rudiment both derived from the “endoblast” become apparent at an early stage, in close association with the stomodaeum and the proctodaeum respectively. These two endoderm-rudiments ultimately grow together and give rise to the epithelium of the mid-gut. These results were confirmed by the observations of K. Heider and W. M. Wheeler (1889) on the embryos of two beetles—Hydrophilus and Doryphora respectively. V. Graber, however (1889), stated that in the Muscidae, while the anterior endoderm-rudiment arises as Kowalevsky had observed, the posterior part of the “mid-gut” has its origin as a direct outgrowth from the proctodaeum. The recent researches of R. Heymons (1895) on the Orthoptera, and of A. Lécaillon (1898) on various leaf beetles, tend to show that the whole of the “mid-gut” arises from the proliferation of cells at the extremity of the stomodaeum and of the proctodaeum. On this view the entire food-canal in most Hexapoda must be regarded as of ectodermal origin, the “endoblast” represents mesoderm only, and the median furrow whence it arises can be no longer compared with the blastopore. According to Heymons, the yolk-cells must be regarded as the true endoderm in the hexapod embryo, for he states (1897) that in the bristle-tail Lepisma and in dragon-flies they give rise to the mid-gut. These views are not, however, supported by other recent observers. J. Carrière’s researches (1897) on the embryology of the mason bee (Chalicodoma) agree entirely with the interpretations of Kowalevsky and Heider, and so on the whole do those of F. Schwangart, who has studied (1904) the embryonic development of Lepidoptera. He finds that the endoderm arises from an anterior and a posterior rudiment derived from the “endoblast,” that many of the cells of these rudiments wander into the yolk, and that the mesenteric epithelium becomes reinforced by cells that migrate from the yolk. K. Escherich (1901), after a new research on the embryology of the muscid Diptera, claims that the fore and hind endodermal rudiments arise from the blastoderm by invagination, and are from their origin distinct from the mesoderm. On the whole it seems likely that the endoderm is represented in part by the yolk, and in part by those anterior and posterior rudiments which usually form the mesenteron, but that in some Hexapoda the whole digestive tract may be ectodermal. It must be admitted that some or the later work on insect embryology has justified the growing scepticism in the universal applicability of the “germ-layer theory.” Heider has suggested, however, that the apparent origin of the mid-gut from the stomodaeum and proctodaeum may be explained by the presence of a “latent endoderm-group” in those invaginations.

From Nussbaum in Miall and Denny, The Cockroach, Lovell Reeve & Co.
Fig. 16.—Cross section of Embryo of German Cockroach (Phyllodromia). S, serosa; A, amnion; E, ectoderm; N, rudiment of nerve-cord; M, mesodermal pouches.

Embryonic Membranes.—A remarkable feature in the embryonic development of most Hexapoda is the formation of a protective membrane analogous to the amnion of higher Vertebrates and known by the same term. Usually there arises around the edge of the germ band a double fold in the undifferentiated blastoderm, which grows over the surface of the embryo, so that its inner and outer layers become continuous, forming respectively the amnion and the serosa (fig. 16, A, S). The embryo of a moth, a dragon-fly or a bug is invaginated into the yolk at the head end, the portion of the blastoderm necessarily pushed in with it forming the amnion. The embryo thus becomes transferred to the dorsal face of the egg, but at a later stage it undergoes reversion to its original ventral position. In some parasitic Hymenoptera there is only a single embryonic membrane formed by delamination from the blastoderm, while in a few insects, including the wingless spring-tails, the embryonic membranes are vestigial or entirely wanting. In the bristle-tails Lepisma and Machilis, an interesting transitional condition of the embryonic membranes has lately been shown by Heymons. The embryo is invaginated into the yolk, but the surface edges of the blastoderm do not close over, so that a groove or pore puts the insunken space that represents the amniotic cavity into communication with the outside. Heymons believes that the “dorsal organ” in the embryos of the lower Arthropoda corresponds with the region invaginated to form the serosa of the hexapod embryo. Wheeler, however, compares with the “dorsal organ” the peculiar extra embryonic membrane or indusium which he has observed between serosa and amnion in the embryo of the grasshopper Xiphidium.