The African wild ass (E. asinus) is the parent of the domesticated breed, and is a long-eared grey animal, with no forelock, and either a shoulder-stripe or dark barrings on the legs. There are two races, of which the Nubian E. a. africanus is the smaller, and has a continuous dorsal stripe and a shoulder-stripe but no bars on the legs. The Somali race (E. a somaliensis), on the other hand, is a larger and greyer animal, with an interrupted dorsal and no shoulder-stripe, but distinct leg-barrings.

Hybrids.—There are thus eight modifications of the horse-type at present existing, sufficiently distinct to be reckoned as species by most zoologists, and easily recognizable by their external characters. They are, however, all so closely allied that each will, at least in a state of domestication or captivity, breed with any of the others. Cases of fertile union are recorded between the horse and the quagga, the horse and the bonte-quagga or Burchell’s zebra, the horse and the onager and kiang or Asiatic wild asses, the common ass and the zebra, the ass and bonte-quagga, the ass and the onager, the onager and the zebra, and the onager and the bonte-quagga. The two species which are farthest removed in structure, the horse and the ass, produce, as is well known, hybrids or mules, which in certain qualities useful to man excel both their progenitors, and in some countries and for certain kinds of work are in greater requisition than either. Although occasional more or less doubtful instances have been recorded of female mules breeding with the males of one or other of the pure species, it is more than doubtful if any case has occurred of their breeding inter se, although the opportunities of doing so must have been great, as mules have been reared in immense numbers for at least several thousands of years. We may therefore consider it settled that the different species of the group are now in that degree of physiological differentiation which enables them to produce offspring with each other, but does not permit of the progeny continuing the race, at all events unless reinforced by the aid of one of the pure forms.

The several members of the group show mental differences quite as striking as those exhibited by their external form, and more than perhaps might be expected from the similarity of their brains. The patience of the ass, the high spirit of the horse, the obstinacy of the mule, have long been proverbial. It is very remarkable that, out of so many species, two only should have shown any aptitude for domestication, and that these should have been from time immemorial the universal and most useful companions and servants of man, while all the others remain in their native freedom to this day. It is, however, still a question whether this really arises from a different mental constitution causing a natural capacity for entering into relations with man, or whether it may not be owing to their having been brought gradually into this condition by long-continued and persevering efforts when the need of their services was felt. It is possible that one reason why most of the attempts to add new species to the list of our domestic animals in modern times have ended in failure is that it does not answer to do so in cases in which existing species supply all the principal purposes to which the new ones might be put. It can hardly be expected that zebras and bonte-quaggas fresh from their native mountains and plains can be brought into competition as beasts of burden and draught with horses and asses, whose useful qualities have been augmented by the training of thousands of generations of progenitors.

Not infrequently instances occur of domestic horses being produced with a small additional toe with complete hoof, usually on the inside of the principal toe, and, though far more rarely, three or more toes may be present. These malformations are often cited as instances of reversion to the condition of some of the earlier forms of equine animals previously mentioned. In some instances, however, the feet of such polydactyle horses bear little resemblance to those of the extinct Hipparion or Anchitherium, but look rather as if due to that tendency to reduplication of parts which occurs so frequently as a monstrous condition, especially among domesticated animals, and which, whatever its origin, certainly cannot in many instances, as the cases of entire limbs superadded, or of six digits in man, be attributed to reversion.

Anatomy

The anatomical structure of the horse has been described in detail in several works mentioned in the bibliography at the end of this section, though these have generally been written from the point of view of the veterinarian rather than of the comparative anatomist. The limits of the present article will only admit of the most salient points being indicated, particularly those in which the horse differs from other Ungulata. Unless otherwise specified, it must be understood that all that is stated here, although mostly derived from observation upon the horse, applies equally well to the other existing members of the group.

Skeleton.—The skull as a whole is greatly elongated, chiefly in consequence of the immense size of the face as compared with the hinder or true cranial portion. The basal line of the cranium from the lower border of the foramen magnum to the incisor border of the palate is nearly straight. The orbit, of nearly circular form, though small in proportion to the size of the whole skull, is distinctly marked, being completely surrounded by a strong ring of bone with prominent edges. Behind it, and freely communicating with it beneath the osseous bridge (the post-orbital process of the frontal) forming the boundary between them, is the small temporal fossa occupying the whole of the side of the cranium proper, and in front is the great flattened expanse of the “cheek,” formed chiefly by the maxilla, giving support to the long row of cheek-teeth, and having a prominent ridge running forward from below the orbit for the attachment of the masseter muscle. The lachrymal occupies a considerable space on the flat surface of the cheek in front of the orbit, and below it the jugal does the same. The latter sends a horizontal or slightly ascending process backwards below the orbit to join the under surface of the zygomatic process of the squamosal, which is remarkably large, and instead of ending as usual behind the orbit, runs forwards to join the greatly developed post-orbital process of the frontal, and even forms part of the posterior and inferior boundary of the orbit, an arrangement not met with in other mammals. The closure of the orbit behind distinguishes the skull of the horse from that of its allies the rhinoceros and tapir, and also from all of the perissodactyles of the Eocene period. In front of the brain cavity, the great tubular nasal cavities are provided with well-developed turbinal bones, and are roofed over by large nasals, broad behind, and ending in front in a narrow decurved point. The opening of the anterior nostrils is prolonged backwards on each side of the face between the nasals and the elongated slender premaxillae. The latter expand in front, and are curved downwards to form the semicircular alveolar border which supports the large incisor teeth. The palate is narrow in the interval between the incisor and molar teeth, in which are situated the large anterior palatine foramina. Between the molar teeth it is broader, and it ends posteriorly in a rounded excavated border opposite the hinder border of the penultimate molar tooth. It is mainly formed by the maxillae, as the palatines are very narrow. The pterygoids are delicate slender slips of bone attached to the hinder border of the palatines, and supported externally by, and generally welded with, the rough pterygoid plates of the alisphenoid, with no pterygoid fossa between. They slope obliquely forwards, and end in curved, compressed, hamular processes. There is a distinct alisphenoid canal for the passage of the internal maxillary artery. The base of the cranium is long and narrow; the alisphenoid is very obliquely perforated by the foramen rotundum, but the foramen ovale is confluent with the large foramen lacerum medium behind. The glenoid surface for the articulation of the mandible is greatly extended transversely, concave from side to side, convex from before backwards in front, and hollow behind, and is bounded posteriorly at its inner part by a prominent post-glenoid process. The squamosal enters considerably into the formation of the temporal fossa, and, besides sending the zygomatic process forwards, it sends down behind the meatus auditorius a post-tympanic process which aids to hold in place the otherwise loose tympano-periotic bone. Behind this the exoccipital gives off a long paroccipital process. The periotic and tympanic are welded together, but not with the squamosal. The former has a wide but shallow floccular fossa on its inner side, and sends backwards a considerable “pars mastoidea,” which appears on the outer surface of the skull between the post-tympanic process of the squamosal and the exoccipital. The tympanic forms a tubular meatus auditorius externus directed outwards and slightly backwards. It is not dilated into a distinct bulla, but ends in front in a pointed rod-like process. It completely embraces the truncated cylindrical tympanohyal, which is of great size, corresponding with the large development of the whole anterior arch of the hyoid. This consists mainly of a long and compressed stylohyal, expanded at the upper end, where it sends off a triangular posterior process. The basi-hyal is remarkable for the long, median, pointed, compressed “glossohyal” process, which it sends forward from its anterior border into the base of the tongue. A similar but less developed process is found in the rhinoceros and tapir. The lower jaw is large, especially the region of the angle, which is expanded and flattened, giving great surface for the attachment of the masseter muscle. The condyle is greatly elevated above the alveolar border; its articular surface is very wide transversely, and narrow and convex from before backwards. The coronoid process is slender, straight, and inclined backwards. The horizontal ramus, long, straight, and compressed, gradually narrows towards the symphysis, where it expands laterally to form with the ankylosed opposite ramus the wide, semicircular, shallow alveolar border for the incisor teeth.

Fig. 1.—Side view of Skull of Horse, with the bone removedso as to expose the whole of the teeth.

PMx, Premaxilla.

Mx, Maxilla.

Na, Nasal bone.

Ma, Jugal or malar bone.

L, Lacrymal bone.

Fr, Frontal bone.

Sq, Squamosal bone.

Pa, Parietal bone.

oc, Occipital condyle.

pp, Paroccipital process.

i¹, i², and i³, The three incisor teeth.

c, The canine tooth.

pm¹, The situation of the rudimentary first premolar, which has been lost in the lower, but is present in the upper jaw.

pm², pm³, and pm4, The three fully developed premolar teeth.

m¹, m², and m³, The three true molar teeth.

The vertebral column consists of seven cervical, eighteen dorsal, six lumbar, five sacral, and fifteen to eighteen caudal vertebrae There may be nineteen rib-bearing vertebrae, in which case five only will be reckoned as belonging to the lumbar series. The odontoid process of the axis is wide, flat, and hollowed above, as in the ruminants. The bodies of the cervical vertebrae are elongated, strongly keeled, and markedly opisthocoelous, or concave behind and convex in front. The neural laminae are broad, the spines almost obsolete, except in the seventh, and the transverse processes not largely developed. In the trunk vertebrae the opisthocoelous character of the centrum gradually diminishes. The spinous processes of the anterior thoracic region are high and compressed. To these is attached the powerful elastic ligament (ligamentum nuchae, or “paxwax”) which, passing forwards in the middle line of the neck above the neural arches of the cervical vertebrae—to which it is also connected—is attached to the occiput and supports the weight of the head. The transverse processes of the lumbar vertebrae are long, flattened, and project horizontally outwards or slightly forward from the arch. The metapophyses are moderately developed, and there are no anapophyses. The caudal vertebrae, except those quite at the base, are slender and cylindrical, without processes and without chevron bones beneath. The ribs are eighteen or nineteen in number on each side, flattened, and united to the sternum by short, stout, tolerably well ossified sternal ribs. The sternum consists of six pieces; the anterior or presternum is compressed and projects forwards like the prow of a boat. The segments which follow gradually widen, and the hinder part of the sternum is broad and flat.

As in all other ungulates, there are no clavicles. The scapula is long and slender, the supra-scapular border being rounded, and slowly and imperfectly ossified. The spine is very slightly developed; rather above the middle its edge is thickened and somewhat turned backwards, but it gradually subsides at the lower extremity without forming any acromial process. The coracoid is a prominent rounded nodule. The humerus is stout and rather short. The ulna is rudimentary, being represented by little more than the olecranon. The shaft gradually tapers below and is firmly welded to the radius. The latter bone is of nearly equal width throughout. The three bones of the first row of the carpus (scaphoid, lunar and cuneiform) are subequal in size. The second row consists of a broad and flat magnum, supporting the great third metacarpal, having to its radial side the trapezoid, and to its ulnar side the unciform, which are both small, and articulate inferiorally with the rudimentary second and fourth metacarpals. The pisiform is large and prominent, flattened and curved; it articulates partly with the cuneiform and partly with the lower end of the radius. The large metacarpal is called in veterinary anatomy “cannon bone”; the small lateral metacarpals, which gradually taper towards their lower extremities, and lie in close contact with the large one, are called “splint bones.” The single digit consists of a moderate-sized proximal (os suffraginis, or large pastern), a short middle (os coronae, or small pastern), and a wide, semi-lunar, ungual phalanx (os pedis, or coffin bone). There is a pair of large nodular sesamoids behind the metacarpo-phalangeal articulation, and a single large transversely-extended sesamoid behind the joint between the second and third phalanx, called the “navicular bone.”