The Stem and its subdivisions or branches raise to the light and air the leaves and flowers, serve as channels for the passage to them of fluids from the roots, and act as reservoirs for nutritive substances. Their functions in annual, biennial and herbaceous perennial plants cease after the ripening of the seed, whilst in plants of longer duration layer after layer of strong woody tissue is formed, which enables them to bear the strains which the weight of foliage and the exposure to wind entail. The gardener aims usually at producing stout, robust, short-jointed stems, instead of long lanky growths defective in woody tissue. To secure these conditions free exposure to light and air is requisite; but in the case of coppices and woods, or where long straight spars are needed by the forester, plants are allowed to grow thickly so as to ensure development in an upward rather than in a lateral direction. This and like matters will, however, be more fitly considered in dealing hereafter with the buds and their treatment.

Leaves.—The work of the leaves may briefly be stated to consist of the processes of nutrition, respiration and transpiration. Nutri tion (assimilation) by the leaves includes the inhalation of air, and the interaction under the influence of light and in the presence of chlorophyll of the carbon dioxide of the air with the water received from the root, to form carbonaceous food. Respiration in plants, as in other organisms, is a process that goes on by night as well as by day and consists in plants in the breaking up of the complex carbonaceous substances formed by assimilation into less complex and more transportable substances. This process, which is as yet imperfectly understood, is attended by the consumption of oxygen, the liberation of energy in the form of heat, and the exhalation of carbon dioxide and water vapour. Transpiration is loss of water by the plant by evaporation, chiefly from the minute pores or stomata on the leaves. In xerophytic plants (e.g. cacti, euphorbias, &c.) from hot, dry and almost waterless regions where evaporation would be excessive, the leaf surface, and consequently the number of stomata, are reduced to a minimum, as it would be fatal to such plants to exhale vapour as freely in those regions as the broad-leaved plants that grow in places where there is abundance of moisture. Although transpiration is a necessary accompaniment of nutrition, it may easily become excessive, especially where the plant cannot readily recoup itself. In these circumstances “syringing” and “damping down” are of value in cooling the temperature of the air in hothouses and greenhouses and increasing its humidity, thereby checking excessive transpiration. Shading the glass with canvas or washes during the summer months has the same object in view. Syringing is also beneficial in washing away dirt and insects.

Buds.—The recognition of the various forms of buds and their modes of disposition in different plants is a matter of the first consequence in the operations of pruning and training. Flower-buds are produced either on the old wood, i.e. the shoots of the past year’s growth, or on a shoot of the present year. The peach, horse-chestnut, lilac, morello cherry, black currant, rhododendron and many other trees and shrubs develop flower-buds for the next season speedily after blossoming, and these may be stimulated into premature growth. The peculiar short, stunted branches or “spurs” which bear the flower-buds of the pear, apple, plum, sweet cherry, red currant, laburnum, &c., deserve special attention. In the rose, passion-flower, clematis, honeysuckle, &c., in which the flower-buds are developed at the ends of the young shoot of the year, we have examples of plants destitute of flower-buds during the winter.

Propagation by Buds.—The detached leaf-buds (gemmae or bulbils), of some plants are capable under favourable conditions of forming new plants. The edges of the leaves of Bryophyllum calycinum and of Cardamine pratensis, and the growths in the axils of the leaves of Lilium bulbiferum, as well as the fronds of certain ferns (e.g. Asplenium bulbiferum), produce buds of this character. It is a matter of familiar observation that the ends of the shoots of brambles take root when bent down to the ground. In some instances buds form on the roots, and may be used for purposes of propagation, as in the Japan quince, the globe thistle, the sea holly, some sea lavenders, Bocconia, Acanthus, &c. Of the tendency in buds to assume an independent existence gardeners avail themselves in the operations of striking “cuttings,” and making “layers” and “pipings,” as also in budding and grafting. In taking a slip or cutting the gardener removes from the parent plant a shoot having one or more buds or “eyes,” in the case of the vine one only, and places it in a moist and sufficiently warm situation, where, as previously mentioned, undue evaporation from the surface is prevented. For some cuttings, pots filled with light soil, with the protection of the propagating-house and of bell-glasses, are requisite; but for many of our hardy deciduous trees and shrubs no such precautions are necessary, and the insertion of a short shoot about half its length into moist and gritty ground at the proper season suffices to ensure its growth. In the case of the more delicate plants, the formation of roots is preceded by the production from the cambium of the cuttings of a succulent mass of tissue, the callus. It is important in some cases, e.g. zonal pelargoniums, fuchsias, shrubby calceolarias, dahlias, carnations, &c., to retain on the cutting some of its leaves, so as to supply the requisite food for storage in the callus. In other cases, where the buds themselves contain a sufficiency of nutritive matter for the young growths, the retention of leaves is not necessary. The most successful mode of forming roots is to place the cuttings in a mild bottom-heat, which expedites their growth, even in the case of many hardy plants whose cuttings strike roots in the open soil. With some hard-wooded trees, as the common white-thorn, roots cannot be obtained without bottom-heat. It is a general rule throughout plant culture that the activity of the roots shall be in advance of that of the leaves. Cuttings of deciduous trees and shrubs succeed best if planted early in autumn while the soil still retains the solar heat absorbed during summer. For evergreens August or September, and for greenhouse and stove-plants the spring and summer months, are the times most suitable for propagation by cuttings.

Layering consists simply in bending down a branch and keeping it in contact with or buried to a small depth in the soil until roots are formed; the connexion with the parent plant may then be severed. Many plants can be far more easily propagated thus than by cuttings.

Grafting or “working” consists in the transfer of a branch, the “graft” or “scion,” from one plant to another, which latter is termed the “stock.” The operation must be so performed that the growing tissues, or cambium-layer of the scion, may fit accurately to the corresponding layer of the stock. In budding, as with roses and peaches, a single bud only is implanted. Inarching is essentially the promotion of the union of a shoot of one plant to that of another of the same or allied species or variety. The outer bark of each being removed, the two shoots are kept in contact by ligature until union is established, when the scion is completely severed from its original attachments. This operation is varied in detail according to the kind of plant to be propagated, but it is essential in all cases that the affinity between the two plants be near, that the union be neatly effected, and that the ratio as well as the season of growth of stock and scion be similar.

The selection of suitable stocks is a matter still requiring much scientific experiment. The object of grafting is to expedite and increase the formation of flowers and fruit. Strong-growing pears, for instance, are grafted on the quince stock in order to restrict their tendency to form “gross” shoots and a superabundance of wood in place of flowers and fruit. Apples, for the same reason, are “worked” on the “paradise” or “doucin” stocks, which from their influence on the scion are known as dwarfing stocks. Scions from a tree which is weakly, or liable to injury by frosts, are strengthened by engrafting on robust stocks. Lindley has pointed out that, while in Persia, its native country, the peach is probably best grafted on the peach, or on its wild type the almond, in England, where the summer temperature of the soil is much lower than that of Persia, it might be expected, as experience has proved, to be most successful on stocks of the native plum.

The soil in which the stock grows is a point demanding attention. From a careful series of experiments made in the Horticultural Society’s Garden at Chiswick, it was found that where the soil is loamy, or light and slightly enriched with decayed vegetable matter, the apple succeeds best on the doucin stock, and the pear on the quince; and where it is chalky it is preferable to graft the apple on the crab, and the pear on the wild pear. For the plum on loamy soils the plum, and on chalky and light soils the almond, are the most desirable stocks, and for the cherry on loamy or light rich soils the wild cherry, and on chalk the “mahaleb” stock.

The form and especially the quality of fruit is more or less affected by the stock upon which it is grown. The Stanwick nectarine, so apt to crack and not to ripen when worked in the ordinary way, is said to be cured of these propensities by being first budded close to the ground, on a very strong-growing Magnum Bonum plum, worked on a Brussels stock, and by then budding the nectarine on the Magnum Bonum about a foot from the ground. The fruit of the pear is of a higher colour and smaller on the quince stock than on the wild pear; still more so on the medlar. On the mountain ash the pear becomes earlier.

The effects produced by stock on scion, and more particularly by scion on stock, are as a rule with difficulty appreciable. Nevertheless, in exceptional cases modified growths, termed “graft-hybrids,” have been obtained which have been attributed to the commingling of the characteristics of stock and scion (see [Hybridism]). Of these the most remarkable example is Cytisus Adami, a tree which year after year produces some shoots, foliage and flowers like those of the common laburnum, others like those of the very different looking dwarf shrub C. purpureus, and others again intermediate between these. We may hence infer that C. purpureus was grafted or budded on the common laburnum, and that the intermediate forms are the result of graft-hybridization. Numerous similar facts have been recorded. Among gardeners the general opinion is against the possibility of graft-hybridization. The wonder, however, seems to be that it does not occur more frequently, seeing that fluids must pass from stock to scion, and matter elaborated in the leaves of the scion must certainly to some extent enter the stock. It is clear, nevertheless, from examination that as a rule the wood of the stock and the wood of the scion retain their external characters year by year without change. Still, as in the laburnum just mentioned, in the variegated jasmine and in Abutilon Darwinii, in the copper beech and in the horse-chestnut, the influence of a variegated scion has occasionally shown itself in the production from the stock of variegated shoots. At a meeting of the Scottish Horticultural Association (see Gard. Chron., Jan. 10, 1880, figs. 12-14) specimens of a small roundish pear, the “Aston Town,” and of the elongated kind known as “Beurré Clairgeau,” were exhibited. Two more dissimilar pears hardly exist. The result of working the Beurré Clairgeau upon the Aston Town was the production of fruits precisely intermediate in size, form, colour, speckling of rind and other characteristics. Similar, though less marked, intermediate characters were obvious in the foliage and flowers.