| ζn = ( | Q | ) | n | (cos nθ + i sin nθ) = | √ (b − a′·u − a) + √ (b − a·u − a′) | , |
| q | √ (a − a′·u − b) |
(6)
| ch nω = ch log ( | Q | ) | n | cos nθ + i sh log ( | Q | ) | n | sin nθ |
| q | q |
| = ½(ζn + ζ−n) = √ | b − a′ | √ | u − a | , |
| a − a′ | u − b |
(7)
| sh nΩ = sh log ( | Q | ) cos nθ + i ch log ( | Q | ) | n | sin nθ |
| q | q |
| = ½(ζn + ζ−n) = √ | b − a | √ | u − a′ | , |
| a − a′ | u − b |
(8)
∞ > a > b > 0 > a′ > −∞
(9)