(16)
∞ > u = aeπs/c > a,
(17)
and this gives the intrinsic equation of the jet, and then the radius of curvature
| ρ = − | ds | = | 1 | dφ | = | i | dw | = | i | dw | / | dΩ | |||
| dθ | Q | dθ | Q | dΩ | Q | du | du |
| = | c | · | u − b | √ (u − a·u − a′) | , | |
| π | u | √ (a − b·b − a′) |
(18)
not requiring the integration of (11) and (12)
If θ = α across the end JJ′ of the jet, where u = ∞, q = Q,
| ch nΩ = cos nα = √ | b − a′ | , sh nΩ = i sin nα= i √ | a − b | , |
| a − a′ | a − a′ |