The above example illustrates how Nicholson’s or Fahrenheit’s hydrometer may be employed as a weighing machine for small weights.
In all hydrometers in which a part only of the instrument is immersed, there is a liability to error in consequence of the surface tension, or capillary action, as it is frequently called, along the line of contact of the instrument and the surface of the liquid (see [Capillary Action]). This error diminishes as the diameter of the stem is reduced, but is sensible in the case of the thinnest stem which can be employed, and is the chief source of error in the employment of Nicholson’s hydrometer, which otherwise would be an instrument of extreme delicacy and precision. The following is Nicholson’s statement on this point:—
“One of the greatest difficulties which attends hydrostatical experiments arises from the attraction or repulsion that obtains at the surface of the water. After trying many experiments to obviate the irregularities arising from this cause, I find reason to prefer the simple one of carefully wiping the whole instrument, and especially the stem, with a clean cloth. The weights in the dish must not be esteemed accurate while there is either a cumulus or a cavity in the water round the stem.”
It is possible by applying a little oil to the upper part of the bulb of a common or of a Sikes’s hydrometer, and carefully placing it in pure water, to cause it to float with the upper part of the bulb and the whole of the stem emerging as indicated in fig. 4, when it ought properly to sink almost to the top of the stem, the surface tension of the water around the circumference of the circle of contact, AA′, providing the additional support required.
| Fig. 4. |
The universal hydrometer of G. Atkins, described in the Phil. Mag. for 1808, xxxi. 254, is merely Nicholson’s hydrometer with the screw at C projecting through the collar into which it is screwed, and terminating in a sharp point above the cup G. To this point soft bodies lighter than water (which would float if placed in the cup) could be attached, and thus completely immersed. Atkins’s instrument was constructed so as to weigh 700 grains, and when immersed to the mark on the stem in distilled water at 60° F. it carried 300 grains in the upper dish. The hydrometer therefore displaced 1000 grains of distilled water at 60° F. and hence the specific gravity of any other liquid was at once indicated by adding 700 to the number of grains in the pan required to make the instrument sink to the mark on the stem. The small divisions on the scale corresponded to differences of 1⁄10th of a grain in the weight of the instrument.
The “Gravimeter,” constructed by Citizen Guyton and described in Nicholson’s Journal, 4to, i. 110, differs from Nicholson’s instrument in being constructed of glass, and having a cylindrical bulb about 21 centimetres in length and 22 millimetres in diameter. Its weight is so adjusted that an additional weight of 5 grammes must be placed in the upper pan to cause the instrument to sink to the mark on the stem in distilled water at the standard temperature. The instrument is provided with an additional piece, or “plongeur,” the weight of which exceeds 5 grammes by the weight of water which it displaces; that is to say, it is so constructed as to weigh 5 grammes in water, and consists of a glass envelope filled with mercury. It is clear that the effect of this “plongeur,” when placed in the lower pan, is exactly the same as that of the 5 gramme weight in the upper pan. Without the extra 5 grammes the instrument weighs about 20 grammes, and therefore floats in a liquid of specific gravity .8. Thus deprived of its additional weight it may be used for spirits. To use the instrument for liquids of much greater density than water additional weights must be placed in the upper pan, and the “plongeur” is then placed in the lower pan for the purpose of giving to the instrument the requisite stability.
Charles’s balance areometer is similar to Nicholson’s hydrometer, except that the lower basin admits of inversion, thus enabling the instrument to be employed for solids lighter than water, the inverted basin serving the same purpose as the pointed screw in Atkins’s modification of the instrument.
Adie’s sliding hydrometer is of the ordinary form, but can be adjusted for liquids of widely differing specific gravities by drawing out a sliding tube, thus changing the volume of the hydrometer while its weight remains constant.
The hydrometer of A. Baumé, which has been extensively used in France, consists of a common hydrometer graduated in the following manner. Certain fixed points were first determined upon the stem of the instrument. The first of these was found by immersing the hydrometer in pure water, and marking the stem at the level of the surface. This formed the zero of the scale. Fifteen standard solutions of pure common salt in water were then prepared, containing respectively 1, 2, 3, ... 15% (by weight) of dry salt. The hydrometer was plunged in these solutions in order, and the stem having been marked at the several surfaces, the degrees so obtained were numbered 1, 2, 3, ... 15. These degrees were, when necessary, repeated along the stem by the employment of a pair of compasses till 80 degrees were marked off. The instrument thus adapted to the determination of densities exceeding that of water was called the hydrometer for salts.