According to Maxwell (Theory of Heat) “When a continuous alteration of form is produced only by a stress exceeding a certain value, the substance is called a solid, however soft and plastic it may be. But when the smallest stress, if only continued long enough, will cause a perceptible and increasing change of form, the substance must be regarded as a viscous fluid, however hard it may be.” Maxwell illustrates the difference between a soft solid and a hard liquid by a jelly and a block of pitch; also by the experiment of supporting a candle and a stick of sealing-wax; after a considerable time the sealing-wax will be found bent and so is a fluid, but the candle remains straight as a solid.

4. Definition of a Fluid.—A fluid is a substance which yields continually to the slightest tangential stress in its interior; that is, it can be divided very easily along any plane (given plenty of time if the fluid is viscous). It follows that when the fluid has come to rest, the tangential stress in any plane in its interior must vanish, and the stress must be entirely normal to the plane. This mechanical axiom of the normality of fluid pressure is the foundation of the mathematical theory of hydrostatics.

The theorems of hydrostatics are thus true for all stationary fluids, however viscous they may be; it is only when we come to hydrodynamics, the science of the motion of a fluid, that viscosity will make itself felt and modify the theory; unless we begin by postulating the perfect fluid, devoid of viscosity, so that the principle of the normality of fluid pressure is taken to hold when the fluid is in movement.

5. The Measurement of Fluid Pressure.—The pressure at any point of a plane in the interior of a fluid is the intensity of the normal thrust estimated per unit area of the plane.

Thus, if a thrust of P ℔ is distributed uniformly over a plane area of A sq. ft., as on the horizontal bottom of the sea or any reservoir, the pressure at any point of the plane is P/A ℔ per sq. ft., or P/144A ℔ per sq. in. (℔/ft.2 and ℔/in.2, in the Hospitalier notation, to be employed in the sequel). If the distribution of the thrust is not uniform, as, for instance, on a vertical or inclined face or wall of a reservoir, then P/A represents the average pressure over the area; and the actual pressure at any point is the average pressure over a small area enclosing the point. Thus, if a thrust ΔP ℔ acts on a small plane area ΔA ft.2 enclosing a point B, the pressure p at B is the limit of ΔP/ΔA; and

p = lt (ΔP/ΔA) = dP/dA,

(1)

in the notation of the differential calculus.

6. The Equality of Fluid Pressure in all Directions.—This fundamental principle of hydrostatics follows at once from the principle of the normality of fluid pressure implied in the definition of a fluid in § 4. Take any two arbitrary directions in the plane of the paper, and draw a small isosceles triangle abc, whose sides are perpendicular to the two directions, and consider the equilibrium of a small triangular prism of fluid, of which the triangle is the cross section. Let P, Q denote the normal thrust across the sides bc, ca, and R the normal thrust across the base ab. Then, since these three forces maintain equilibrium, and R makes equal angles with P and Q, therefore P and Q must be equal. But the faces bc, ca, over which P and Q act, are also equal, so that the pressure on each face is equal. A scalene triangle abc might also be employed, or a tetrahedron.

Fig. 1a.