34. Motion symmetrical about an Axis.—When the motion of a liquid is the same for any plane passing through Ox, and lies in the plane, a function ψ can be found analogous to that employed in plane motion, such that the flux across the surface generated by the revolution of any curve AP from A to P is the same, and represented by 2π (ψ − ψ0); and, as before, if dψ is the increase in ψ due to a displacement of P to P′, then k the component of velocity normal to the surface swept out by PP′ is such that 2πdψ = 2πyk·PP′; and taking PP′ parallel to Oy and Ox,

u = −dψ/ydy,   v = dψ/ydx,

(1)

and ψ is called after the inventor, “Stokes’s stream or current function,” as it is constant along a stream line (Trans. Camb. Phil. Soc., 1842; “Stokes’s Current Function,” R. A. Sampson, Phil. Trans., 1892); and dψ/yds is the component velocity across ds in a direction turned through a right angle forward.

In this symmetrical motion

ξ = 0, η = 0, 2ζ = d( 1 ) + d( 1 )
dx ydx dyy dy
= 1( d2ψ+ d2ψ 1 ) = − 1∇2ψ,
y dx2dy2 ydy y

(2)

suppose; and in steady motion,

dH+ 1 ∇2ψ = 0, dH+ 1 ∇2ψ = 0,
dx y2dx dyy2 dy