The side walls of the thalamencephalon are greatly thickened forming the thalamus (epithalamus and hypothalamus), while a ganglionic thickening of the roof posteriorly on each side forms the ganglia habenulae which receive olfactory fibres from the base of the hemisphere. The habenular ganglia are unusually large in the lampreys and are here strongly asymmetrical, the right being the larger.

The floor of the thalamencephalon projects downwards and backwards as the infundibulum. The side walls of this are thickened to form characteristic lobi inferiores, while the blind end develops glandular outgrowths (infundibular gland, fig. 30) overlaid by a rich development of blood sinuses and forming with them the saccus vasculosus. The optic chiasma, where present, is involved in the floor of the thalamencephalon and forms a large, upwardly-projecting ridge. Farther forwards on the floor or anterior wall is the anterior commissure (see below).

Passing forwards from the mid-brain (cf. fig. 30) a series of interesting structures are found connected with the roof of the primitive fore-brain, viz.—posterior commissure (intercalary region), pineal organ, habenular commissure with anterior parietal organ, dorsal sac (= pineal cushion), velum transversum, paraphysis. The posterior commissure is situated in the boundary between thalamencephalon and mid-brain. It is formed of fibres connecting up the right and left sides of the tectum opticum (?). The habenular or superior commissure situated farther forwards connects the two ganglia habenulae. In the immediate neighbourhood of these ganglia there project upwards two diverticula of the brain-roof known as the pineal organ and the parapineal (or anterior parietal) organ. The special interest of these organs[40] lies in the fact that in certain vertebrates one (parapineal in Sphenodon and in lizards) or both (Petromyzon) exhibit histological features which show that they must be looked on as visual organs or eyes. In gnathostomatous fishes they do not show any definite eye-like structure, but in certain cases (Polyodon, Callichthys, &c.) the bony plates of the skull-roof are discontinuous over the pineal organ forming a definite parietal foramen such as exists in lizards where the eye-like structure is distinct. It is also usual to find in the epithelial wall of the pineal organ columnar cells which show club-shaped ends projecting into the lumen (exactly as in the young visual cells of the retina[41]) and are prolonged into a root-like process at the other end. Definite nerve fibres pass down from these parietal organs to the brain. It is stated that the fibres from the pineal organ pass into the posterior commissure, those of the parapineal organ into the habenular commissure.

The facts mentioned render it difficult to avoid the conclusion that these organs either have been sensory or are sensory. Possibly they represent the degenerate and altered vestiges of eye-like organs present in archaic vertebrates, or it may be that they represent the remains of organs not eye-like in function but which for some other reason lay close under the surface of the body. It would seem natural that a diverticulum of brain-tissue exposed to the influence of light-rays should exhibit the same reaction as is shown frequently elsewhere in the animal kingdom and tend to assume secondarily the characters of a visual organ. The presence of the rod-like features in the epithelial cells is perhaps in favour of the latter view. In evolution we should expect these to appear before the camera-like structure of a highly developed eye, while in the process of degeneration we should expect these fine histological characters to go first.

Selachians.—No parapineal organ is present. The pineal body (except in Torpedo where it is absent) is in the form of a long slender tube ending in front in a dilated bulb lying near the front end of the brain in close contact with, or enclosed in, a definite foramen in the cranial roof.

Holocephali and Crossopterygii.—Here also the pineal body is long and tubular: at its origin it passes dorsalwards or slightly backwards behind the large dorsal sac.

Actinopterygian Ganoids resemble Selachians on the whole. In Amia a parapineal organ is present, and it is said to lie towards the left side and to be connected by a thick nerve with the left habenular ganglion (cf. Petromyzon, article [Cyclostomata]). This is adduced to support the view that the pineal and parapineal bodies represent originally paired structures.

Teleostei.—A parapineal rudiment appears in the embryo of some forms, but in the adult only the pineal organ is known to exist. This is usually short and club-shaped, its terminal part with much folded wall and glandular in character. In a few cases a parietal foramen occurs (Callichthys, Loricaria, &c.).

Dipneusti.—The pineal organ is short and simple. No parapineal organ is developed.

The dorsal sac is formed by that part of the roof of the thalamencephalon lying between the habenular commissure and the region of the velum. In some cases a longitudinal groove is present in which the pineal organ lies (Dipneusti). In the Crossopterygians the dorsal sac is particularly large and was formerly mistaken for the pineal organ.