ƒ(x + Δx) − ƒ(x)= (x + Δx)2 − x2= 2xΔx + (Δx)2,
Δx ΔxΔx

and

ƒ′(x) = 2x.

The process of forming the derived function of a given function is called differentiation. The fraction Δy/Δx is called the “quotient of differences,” and its limit dy/dx is called the “differential coefficient of y with respect to x.” The rules for forming differential coefficients constitute the differential calculus.

The problem of tangents is solved at one stroke by the formation of the differential coefficient; and the problem of maxima and minima is solved, apart from the discrimination of maxima from minima and some further refinements, by equating the differential coefficient to zero (see [Maxima and Minima]).

Fig. 3.

5. The problem of quadratures leads to a type of limiting process which may be described as follows: Let y = ƒ(x) be the equation of a curve, and let AC and BD be the ordinates of the points C and D (see fig. 3). Let a, b be the abscissae of these Integration. points. Let the segment AB be divided into a number of segments by means of intermediate points such as M, and let MN be one such segment. Let PM and QN be those ordinates of the curve which have M and N as their feet. On MN as base describe two rectangles, of which the heights are the greatest and least values of y which correspond to points on the arc PQ of the curve. In fig. 3 these are the rectangles RM, SN. Let the sum of the areas of such rectangles as RM be formed, and likewise the sum of the areas of such rectangles as SN. When the number of the points such as M is increased without limit, and the lengths of all the segments such as MN are diminished without limit, these two sums of areas tend to limits. When they tend to the same limit the curvilinear figure ACDB has an area, and the limit is the measure of this area (see § 33 below). The limit in question is the same whatever law may be adopted for inserting the points such as M between A and B, and for diminishing the lengths of the segments such as MN. Further, if P′ is any point on the arc PQ, and P′M′ is the ordinate of P′, we may construct a rectangle of which the height is P′M′ and the base is MN, and the limit of the sum of the areas of all such rectangles is the area of the figure as before. If x is the abscissa of P, x + Δx that of Q, x′ that of P′, the limit in question might be written

lim. Σba ƒ(x′) Δx,

where the letters a, b written below and above the sign of summation Σ indicate the extreme values of x. This limit is called “the definite integral of ƒ(x) between the limits a and b,” and the notation for it is

∫ba ƒ(x) dx.